analysis_predictor.cc 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
28
#include "paddle/fluid/inference/api/helper.h"
29
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
30
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
31 32 33
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif
N
nhzlx 已提交
34 35
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/memory/memcpy.h"
38
#include "paddle/fluid/platform/cpu_helper.h"
39
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
40 41 42
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(profile);
43 44 45

namespace paddle {

46
using contrib::AnalysisConfig;
N
nhzlx 已提交
47 48 49 50
using inference::Singleton;
using inference::tensorrt::TRTInt8Calibrator;
using inference::tensorrt::TRTCalibratorRes;
using inference::tensorrt::TRTCalibratorResManager;
51

52 53 54 55 56 57 58 59 60 61 62
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST) {
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
63
bool AnalysisPredictor::Init(
64 65
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
66
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
67 68 69
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
70 71
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
72 73 74
    platform::EnableProfiler(tracking_device);
  }

75
  // no matter with or without MKLDNN
L
luotao1 已提交
76
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
77

78 79 80 81 82 83 84 85 86 87 88 89 90
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
91
  }
92 93 94 95 96 97 98 99 100

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
101
  if (parent_scope) {
102 103 104
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
105
    scope_ = parent_scope;
106
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
107 108 109
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
110
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
111
  }
112 113 114 115 116
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
117 118
  if (!program) {
    if (!LoadProgramDesc()) return false;
119 120 121 122

    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
123
    if (config_.ir_optim()) {
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // If the parent_scope is passed, we assert that the persistable variables
      // are already created, so just create the no persistable variables.

      // If not cloned, the parameters should be loaded
      // OptimizeInferenceProgram.
      // So in both cases, just the local variables are needed to load, not the
      // parematers.
      executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
140
  } else {
141 142
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
143 144
    inference_program_ = program;
  }
M
Michal Gallus 已提交
145

146 147 148 149 150
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
151
  if (config_.use_gpu_) {
152
    status_use_gpu_ = true;
153
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
154 155 156 157 158 159 160 161
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
162
                     config_.use_feed_fetch_ops_);
163

164
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
165

166 167 168
  return true;
}

L
luotao1 已提交
169
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
170 171 172 173 174 175 176
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

177 178 179
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
M
minqiyang 已提交
180
  VLOG(3) << "Predictor::predict";
181 182 183 184 185 186
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
187
    return false;
188
  }
M
Michal Gallus 已提交
189

190 191 192
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
193

194 195 196 197
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
198
  }
M
minqiyang 已提交
199
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
200

Y
Yan Chunwei 已提交
201 202 203 204 205 206 207
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
208 209
  return true;
}
210

211 212
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
213
  VLOG(3) << "Predictor::set_feed";
214 215 216 217 218 219 220 221 222 223 224 225 226 227
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
228
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
229
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
230
      input_ptr = input.mutable_data<float>(ddim, place_);
231 232 233 234 235
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

236 237 238 239 240 241
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
242 243 244 245
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
246 247 248
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
249
                   inputs[i].data.length(), dev_ctx->stream());
250 251 252 253
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
254 255 256 257 258 259 260
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
261
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
262 263
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
264 265
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
266 267
      }
      idx = feed_names_[name];
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
298
  VLOG(3) << "Predictor::get_fetch";
299 300 301 302 303 304 305 306
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
307
    output->name = fetchs_[idx]->Input("X")[0];
Y
Yu Yang 已提交
308
    if (type == framework::proto::VarType::FP32) {
309 310
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
311
    } else if (type == framework::proto::VarType::INT64) {
312 313 314 315 316 317
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
318 319
  return true;
}
320

321
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
322
void AnalysisPredictor::OptimizeInferenceProgram() {
323 324
  status_program_optimized_ = true;

325 326
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
T
Tao Luo 已提交
327
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
328
  // Analyze inference_program
329 330
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
N
nhzlx 已提交
331
    argument_.SetModelPath(config_.model_dir());
T
Tao Luo 已提交
332 333
  } else {
    PADDLE_ENFORCE(
334
        !config_.params_file().empty(),
T
Tao Luo 已提交
335
        "Either model_dir or (param_file, prog_file) should be set.");
336
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
337 338 339
    std::string dir = inference::analysis::SplitPath(config_.prog_file());

    argument_.SetModelPath(dir);
340 341
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
342
  }
343

344
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
345 346 347
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
348
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
349
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
W
Wojciech Uss 已提交
350
  }
351

352 353 354 355
  if (config_.use_mkldnn_) {
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

356
  auto passes = config_.pass_builder()->AllPasses();
357
  if (!config_.ir_optim()) passes.clear();
358 359 360 361 362 363 364
  argument_.SetIrAnalysisPasses(passes);
  argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
365
  inference_program_.reset(
366
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
367
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
368
}
369 370

template <>
371 372
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
373
  VLOG(3) << "create AnalysisConfig";
374
  if (config.use_gpu()) {
375
    // 1. GPU memeroy
376 377 378
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
379
    std::vector<std::string> flags;
380 381 382 383 384 385 386 387 388 389 390

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
391 392
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
393
                         std::to_string(fraction_of_gpu_memory);
394
      flags.push_back(flag);
M
minqiyang 已提交
395
      VLOG(3) << "set flag: " << flag;
396 397 398 399 400
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
401
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
402 403
    return nullptr;
  }
404
  return std::move(predictor);
405 406
}

407
void AnalysisPredictor::PrepareFeedFetch() {
408 409
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

428 429 430 431 432 433 434 435
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
458
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
459
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
460
  tensor_array_batch_cleaner_.ResetTensorArray();
461 462 463 464 465
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
466
  std::string filename;
467 468 469
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
470 471 472
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
473
    filename = config_.prog_file();
474
  } else {
475
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
476 477 478 479
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
480
    LOG(ERROR) << string::Sprintf(
481 482
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
483 484
    return false;
  }
485 486 487

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
488
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
489 490 491
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
492 493
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
494 495 496 497 498 499 500 501
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
502
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
503
  }
504 505 506 507 508 509 510
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

532
      if (!config_.params_file().empty()) {
533 534 535 536 537 538
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
539
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
540 541 542 543 544
        op->CheckAttrs();
      }
    }
  }

545
  if (!config_.params_file().empty()) {
546 547 548 549 550 551
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
552
    op->SetAttr("file_path", {config_.params_file()});
553 554 555 556
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
557
  framework::NaiveExecutor e(place_);
558 559 560 561
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

562 563
  return true;
}
564

N
nhzlx 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
      if (!Singleton<TRTCalibratorResManager>::Global().Has(engine_name)) {
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
      TRTCalibratorRes *calib_res =
          Singleton<TRTCalibratorResManager>::Global().Get(engine_name);
      LOG(INFO) << "Wait for calib threads done.";
      calib_res->calib_->waitAndSetDone();
      LOG(INFO) << "Finish wait.";
      calib_res->thr_->join();
      std::string calibration_data =
          calib_res->calib_->getCalibrationTableAsString();

      if (calibration_data.size() == 0) {
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
      std::string calibration_data_path =
          argument_.model_path() + "/trt_calib_" + engine_name;
      std::ofstream ofile(calibration_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration data to file "
                << calibration_data_path;
      ofile << calibration_data;
      ofile.close();
    }
  }
  // Free all calibrator resources.
  Singleton<TRTCalibratorResManager>::Global().DeleteALL();
  return true;
}

605
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
606 607 608 609 610
  if (config_.tensorrt_engine_enabled() &&
      config_.tensorrt_precision_mode_ == "INT8" &&
      Singleton<TRTCalibratorResManager>::Global().Has()) {
    SaveTrtCalibToDisk();
  }
611 612 613 614 615 616 617 618 619
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
}

620 621 622 623 624 625
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
626 627
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
628
    const contrib::AnalysisConfig &config) {
Y
Yan Chunwei 已提交
629 630 631 632
  return CreatePaddlePredictor<contrib::AnalysisConfig,
                               PaddleEngineKind::kAnalysis>(config);
}

633
}  // namespace paddle
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
656
USE_TRT_CONVERTER(split);
657 658
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
659
USE_TRT_CONVERTER(leaky_relu);
660
#endif