analysis_predictor.cc 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/fluid/framework/feed_fetch_method.h"
22
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24
#include "paddle/fluid/framework/ir/pass.h"
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/scope.h"
27
#include "paddle/fluid/inference/api/helper.h"
28
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
29
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
30 31 32
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif
33
#include "paddle/fluid/inference/utils/singleton.h"
34
#include "paddle/fluid/memory/memcpy.h"
35
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
36 37 38
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(profile);
39 40 41

namespace paddle {

42 43
using contrib::AnalysisConfig;

44 45 46 47 48 49 50 51 52 53 54
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST) {
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
55
bool AnalysisPredictor::Init(
56 57
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
58
  VLOG(30) << "Predictor::init()";
T
tensor-tang 已提交
59 60 61 62 63 64 65 66
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

67
  // no matter with or without MKLDNN
L
luotao1 已提交
68
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
69

70 71 72 73 74 75 76 77 78 79 80 81 82
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
83
  }
84 85 86 87 88 89 90 91 92

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
93
  if (parent_scope) {
94 95 96
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
97
    scope_ = parent_scope;
98
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
99 100 101
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
102
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
103
  }
104 105 106 107 108
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
109 110
  if (!program) {
    if (!LoadProgramDesc()) return false;
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
    if (config_.enable_ir_optim) {
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // If the parent_scope is passed, we assert that the persistable variables
      // are already created, so just create the no persistable variables.

      // If not cloned, the parameters should be loaded
      // OptimizeInferenceProgram.
      // So in both cases, just the local variables are needed to load, not the
      // parematers.
      executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
132
  } else {
133 134
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
135 136
    inference_program_ = program;
  }
M
Michal Gallus 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
  if (config_.use_gpu) {
    status_use_gpu_ = true;
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
154 155
                     config_.use_feed_fetch_ops);

156
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
157

158 159 160
  return true;
}

L
luotao1 已提交
161
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
162 163 164 165 166 167 168
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

169 170 171
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
172
  VLOG(30) << "Predictor::predict";
173 174 175 176 177 178
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
179
    return false;
180
  }
M
Michal Gallus 已提交
181

182 183 184
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
185

186 187 188 189
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
190
  }
191
  VLOG(30) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
192 193 194 195

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
196 197
  return true;
}
198

199 200
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
201
  VLOG(30) << "Predictor::set_feed";
202 203 204 205 206 207 208 209 210 211 212 213 214 215
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
216
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
217
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
218
      input_ptr = input.mutable_data<float>(ddim, place_);
219 220 221 222 223
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
                   inputs[i].data.length(),
                   0);  // stream 0 for sync copy
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
    if (config_.specify_input_name) {
      idx = feed_names_[inputs[i].name];
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
278
  VLOG(30) << "Predictor::get_fetch";
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
297 298
  return true;
}
299

300
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
301
void AnalysisPredictor::OptimizeInferenceProgram() {
302 303 304
  status_program_optimized_ = true;

  argument_.SetUseGPU(config_.use_gpu);
S
superjomn 已提交
305
  argument_.SetGPUDeviceId(config_.device);
Y
Yan Chunwei 已提交
306 307
  // Analyze inference_program
  if (!config_.model_dir.empty()) {
308
    argument_.SetModelDir(config_.model_dir);
Y
Yan Chunwei 已提交
309 310 311 312 313
  } else {
    PADDLE_ENFORCE(
        !config_.param_file.empty(),
        "Either model_dir or (param_file, prog_file) should be set.");
    PADDLE_ENFORCE(!config_.prog_file.empty());
314 315
    argument_.SetModelProgramPath(config_.prog_file);
    argument_.SetModelParamsPath(config_.param_file);
Y
Yan Chunwei 已提交
316
  }
317

318 319 320 321
  if (config_.use_gpu && config_.use_tensorrt_) {
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
W
Wojciech Uss 已提交
322
  }
323

324 325 326 327 328 329 330 331 332
  auto passes = config_.pass_builder()->AllPasses();
  if (!config_.enable_ir_optim) passes.clear();
  argument_.SetIrAnalysisPasses(passes);
  argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
333
  inference_program_.reset(
334
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
335
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
336
}
337 338

template <>
339 340
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
341
  VLOG(30) << "create AnalysisConfig";
342 343 344 345 346 347 348 349 350 351 352 353 354
  if (config.use_gpu) {
    // 1. GPU memeroy
    PADDLE_ENFORCE_GT(
        config.fraction_of_gpu_memory, 0.f,
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         std::to_string(config.fraction_of_gpu_memory);
      flags.push_back(flag);
355
      VLOG(30) << "set flag: " << flag;
356 357 358 359 360
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
361
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
362 363
    return nullptr;
  }
364
  return std::move(predictor);
365 366
}

367
void AnalysisPredictor::PrepareFeedFetch() {
368 369
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

388 389 390 391 392 393 394 395
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
418 419 420
  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
421 422 423 424 425
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
426
  std::string filename;
427
  if (!config_.model_dir.empty()) {
428
    filename = config_.model_dir + "/__model__";
429 430 431 432
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
433
    filename = config_.prog_file;
434
  } else {
435 436 437 438 439
    if (config_.model_dir.empty() && config_.prog_file.empty()) {
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
440 441 442 443 444
    LOG(ERROR) << string::Sprintf(
        "not valid model path '%s' or program path '%s'.", config_.model_dir,
        config_.param_file);
    return false;
  }
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

  std::string pb_content;
  // Read binary
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
  fin.seekg(0, std::ios::end);

  pb_content.resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(pb_content.at(0)), pb_content.size());
  fin.close();

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
  proto.ParseFromString(pb_content);
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      if (!config_.param_file.empty()) {
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
        op->SetAttr("file_path", {config_.model_dir + "/" + new_var->Name()});
        op->CheckAttrs();
      }
    }
  }

  if (!config_.param_file.empty()) {
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
    op->SetAttr("file_path", {config_.param_file});
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
512
  framework::NaiveExecutor e(place_);
513 514 515 516
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

517 518
  return true;
}
519 520 521 522 523 524 525 526 527 528 529

AnalysisPredictor::~AnalysisPredictor() {
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
}

530 531 532 533 534 535
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
536 537
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
538
    const contrib::AnalysisConfig &config) {
Y
Yan Chunwei 已提交
539 540 541 542
  return CreatePaddlePredictor<contrib::AnalysisConfig,
                               PaddleEngineKind::kAnalysis>(config);
}

543
}  // namespace paddle
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
566
USE_TRT_CONVERTER(split);
567 568
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
569
USE_TRT_CONVERTER(leaky_relu);
570
#endif