batch_norm_op.cc 25.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/data_layout.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
49 50
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
51 52 53 54

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Y
Yang Yu 已提交
55
    const int64_t C =
Q
QI JUN 已提交
56 57
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65 66 67 68

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
Y
Yang Yu 已提交
69
    ctx->ShareLoD("X", "Y");
Q
Qiao Longfei 已提交
70
  }
K
Kexin Zhao 已提交
71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
K
update  
Kexin Zhao 已提交
74
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
75
    auto input_data_type = ctx.Input<Tensor>("X")->type();
D
dzhwinter 已提交
76 77 78
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
K
Kexin Zhao 已提交
79
    auto bn_param_type = framework::proto::VarType::FP32;
D
dzhwinter 已提交
80 81 82
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
Y
Yu Yang 已提交
83
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
K
Kexin Zhao 已提交
84
                      "Scale input should be of float type");
Y
Yu Yang 已提交
85
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
K
Kexin Zhao 已提交
86
                      "Bias input should be of float type");
Y
Yu Yang 已提交
87
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
K
Kexin Zhao 已提交
88
                      "Mean input should be of float type");
Y
Yu Yang 已提交
89
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
K
Kexin Zhao 已提交
90
                      "Variance input should be of float type");
91

M
mozga-intel 已提交
92
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
93
    framework::LibraryType library = framework::LibraryType::kPlain;
M
mozga-intel 已提交
94
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95
#ifdef PADDLE_WITH_MKLDNN
96
    if (library == framework::LibraryType::kPlain &&
97
        platform::CanMKLDNNBeUsed(ctx)) {
98
      library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
99
      layout = framework::DataLayout::kMKLDNN;
100 101
    }
#endif
102

103
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
104
                                   library);
K
Kexin Zhao 已提交
105
  }
Q
Qiao Longfei 已提交
106 107 108 109
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
110
  void Make() override {
111 112 113 114
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
115
    AddAttr<float>("momentum", "").SetDefault(0.9);
C
chengduoZH 已提交
116 117 118 119 120 121
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
Q
QI JUN 已提交
122
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
123 124 125
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
126
             "that is applied to the output");
Q
Qiao Longfei 已提交
127 128
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
129
             "that is applied to the output");
Q
Qiao Longfei 已提交
130
    AddInput("Mean",
131
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
132 133 134
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
135
             "or estimated Variance (for testing)");
136
    AddOutput("Y", "result after normalization");
Q
Qiao Longfei 已提交
137 138
    AddOutput("MeanOut",
              "Share memory with Mean. "
139
              "Store the global mean when training");
Q
Qiao Longfei 已提交
140 141
    AddOutput("VarianceOut",
              "Share memory with Variance. "
142
              "Store the global Variance when training");
Q
Qiao Longfei 已提交
143 144
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
145 146
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
147 148
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
149 150
              "will apply to output when training")
        .AsIntermediate();
151 152
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
153 154 155
        .SetDefault(false);
    AddAttr<bool>("fuse_with_relu",
                  "(bool, default false) Only used in mkldnn kernel")
156
        .SetDefault(false);
157 158 159 160 161 162 163 164
    AddAttr<bool>("use_global_stats",
                  "(bool, default false) Whether to use global mean and "
                  "variance. In inference or test mode, set use_global_stats "
                  "to true or is_test true. the behavior is equivalent. "
                  "In train mode, when setting use_global_stats True, the "
                  "global mean and variance are also used during train time, "
                  "the BN acts as scaling and shiffting.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
165
    AddComment(R"DOC(
166
Batch Normalization.
Q
Qiao Longfei 已提交
167

168 169 170 171 172 173
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
174 175 176 177 178

)DOC");
  }
};

C
chengduo 已提交
179 180 181 182 183 184 185 186 187
class BatchNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};

Q
Qiao Longfei 已提交
188
template <typename T>
Q
QI JUN 已提交
189 190
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
191 192 193 194 195
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
196 197 198 199
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
200 201 202
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
203 204 205

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
206 207
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
208 209
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
210 211
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

227
    if (!global_stats) {
Q
Qiao Longfei 已提交
228 229 230 231 232 233 234 235
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

236 237 238 239 240 241 242 243
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
244
        framework::TensorCopy(*x, ctx.GetPlace(), y);
245 246 247
        return;
      }

Q
QI JUN 已提交
248 249
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
250 251 252 253 254 255 256 257 258 259 260 261
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
262
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
276
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
277 278 279 280 281 282 283 284 285 286
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
287
    if (global_stats) {
Q
Qiao Longfei 已提交
288 289 290 291 292 293 294 295 296 297 298
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
299 300
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
314 315
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
316 317 318 319 320 321 322 323
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
324
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
325 326 327 328 329 330 331 332 333
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
334
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
335 336 337 338 339 340 341 342 343 344 345
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
346 347 348 349 350 351 352
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                   "Input(SavedMean) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                   "Input(SavedVariance) should not be null");
Q
Qiao Longfei 已提交
353 354 355

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
356 357 358 359 360 361 362 363 364 365 366
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                     "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                     "null at same time");
    }
    const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
    if (use_global_stats) {
      PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                     "Using global stats during training is not supported "
                     "in gradient op kernel of batch_norm_mkldnn_op now.");
    }
Q
Qiao Longfei 已提交
367 368

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
369 370
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
371
    const int C =
Q
QI JUN 已提交
372 373
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
374 375

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
376 377 378 379
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
      ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
    }
Q
Qiao Longfei 已提交
380
  }
Q
Qiao Longfei 已提交
381

Y
Yu Yang 已提交
382
 protected:
383
  framework::OpKernelType GetExpectedKernelType(
Q
Qiao Longfei 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
398

M
mozga-intel 已提交
399
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
400 401 402
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

403
#ifdef PADDLE_WITH_MKLDNN
404
    if (library == framework::LibraryType::kPlain &&
405
        platform::CanMKLDNNBeUsed(ctx)) {
406 407
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
408 409
    }
#endif
410

Y
Yu Yang 已提交
411 412
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace(), layout, library);
Q
Qiao Longfei 已提交
413
  }
Q
Qiao Longfei 已提交
414 415 416
};

template <typename T>
Q
QI JUN 已提交
417
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
418 419 420 421 422 423 424 425 426
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
427
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
428 429
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
430 431
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
432 433 434 435

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
436 437
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
438 439
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
440 441
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
442 443 444 445 446 447 448 449
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
478 479 480 481 482

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
483 484
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
485

486 487 488 489
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
490

491 492
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
493 494 495
      return;
    }

496 497
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
498

Q
QI JUN 已提交
499 500
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
501 502 503 504 505 506
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

507 508 509 510 511 512 513 514
        if (d_scale && d_bias) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_bias_arr(c) += d_y_arr.col(nc).sum();
            d_scale_arr(c) += ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) *
                               d_y_arr.col(nc))
                                  .sum();
          }
Q
Qiao Longfei 已提交
515
        }
516 517 518 519 520 521 522 523 524 525 526 527 528 529
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
                (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) *
                     inv_var_arr(c));
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
530 531 532
        }
        break;
      }
Q
QI JUN 已提交
533
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
534 535 536 537 538 539 540 541 542 543 544
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

        if (d_scale && d_bias) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_bias_arr += d_y_arr.col(nhw);
            d_scale_arr +=
                (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          }
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
                (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
                 x_minus_mean.col(nhw) * inv_var_sqr *
                     d_y_mul_x_minus_mean_row_sum);
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
566 567 568 569
        }
        break;
      }
      default:
Q
QI JUN 已提交
570
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
571 572 573 574
    }
  }
};

Y
Yu Yang 已提交
575 576 577 578 579 580 581 582 583 584 585 586
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("batch_norm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetInput("Scale", Input("Scale"));
587
    op->SetInput("Bias", Input("Bias"));
Y
Yu Yang 已提交
588 589 590
    op->SetInput("SavedMean", Output("SavedMean"));
    op->SetInput("SavedVariance", Output("SavedVariance"));

591
    // used when setting use_global_stats True during training
592 593 594 595
    if (boost::get<bool>(GetAttr("use_global_stats"))) {
      op->SetInput("Mean", Output("MeanOut"));
      op->SetInput("Variance", Output("VarianceOut"));
    }
596

Y
Yu Yang 已提交
597 598 599 600 601 602 603 604 605 606
    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

D
dzhwinter 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
class BatchNormInplaceInToOut : public framework::InplaceInToOut {
 public:
  using InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc &op_desc,
      framework::BlockDesc *block) const override {
    std::unordered_map<std::string, std::string> inplace_in_to_out = {
        {"Mean", "MeanOut"}, {"Variance", "VarianceOut"}, {"X", "Y"},
    };
    return inplace_in_to_out;
  }
};

class BatchNormGradInplaceInToOut : public framework::InplaceInToOut {
 public:
  using InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc &op_desc,
      framework::BlockDesc *block) const override {
    std::unordered_map<std::string, std::string> inplace_in_to_out = {
        // Scale, Bias, SavedMean, SavedVariance shape is [batch_size, C]
        {framework::GradVarName("Y"), framework::GradVarName("X")},
        {"SavedMean", framework::GradVarName("Scale")},
        {"SavedVariance", framework::GradVarName("Bias")},
    };
    return inplace_in_to_out;
  }
};

Q
Qiao Longfei 已提交
640 641 642 643
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
644
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
D
dzhwinter 已提交
645 646 647 648
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker,
                  ops::BatchNormInplaceInToOut);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp,
                  ops::BatchNormGradInplaceInToOut);
Y
Yu Yang 已提交
649

Q
QI JUN 已提交
650
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
651 652
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
653 654
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
655 656
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);