Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e870947c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e870947c
编写于
3月 18, 2018
作者:
K
Kexin Zhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix batch norm fp16 param type
上级
3233b2b3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
69 addition
and
28 deletion
+69
-28
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+23
-0
paddle/fluid/operators/batch_norm_op.cu.cc
paddle/fluid/operators/batch_norm_op.cu.cc
+23
-15
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+5
-0
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
+18
-13
未找到文件。
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
e870947c
...
...
@@ -80,6 +80,29 @@ class BatchNormOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"SavedVariance"
,
{
C
});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
// For float or float16 input tensor, the type of the scale, bias, mean,
// and var tensors should both be float.
auto
bn_param_type
=
framework
::
proto
::
VarType
::
FP32
;
PADDLE_ENFORCE_EQ
(
bn_param_type
,
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Scale"
)
->
type
()),
"Scale input should be of float type"
);
PADDLE_ENFORCE_EQ
(
bn_param_type
,
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Bias"
)
->
type
()),
"Bias input should be of float type"
);
PADDLE_ENFORCE_EQ
(
bn_param_type
,
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Mean"
)
->
type
()),
"Mean input should be of float type"
);
PADDLE_ENFORCE_EQ
(
bn_param_type
,
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Variance"
)
->
type
()),
"Variance input should be of float type"
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
class
BatchNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/batch_norm_op.cu.cc
浏览文件 @
e870947c
...
...
@@ -26,6 +26,8 @@ using Tensor = framework::Tensor;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
using
bn_param_type
=
CudnnDataType
<
T
>::
bn_param_type
;
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
...
...
@@ -104,8 +106,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
x_dims
.
size
()
>
3
?
x_dims
.
size
()
:
4
,
dims
.
data
(),
strides
.
data
()));
// Note: PERSISTENT not implemented for inference
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDeriveBNTensorDescriptor
(
bn_param_desc_
,
data_desc_
,
mode_
));
bn_param_desc_
,
data_desc_
,
is_test
?
CUDNN_BATCHNORM_SPATIAL
:
mode_
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
...
...
@@ -118,15 +121,15 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
// alloc memory
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
saved_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_out
->
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
());
variance_out
->
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
());
saved_mean
->
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
dev_ctx
,
saved_mean
,
static_cast
<
T
>
(
0
));
functor
(
dev_ctx
,
saved_variance
,
static_cast
<
T
>
(
0
));
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
bn_param_type
<
T
>
>
functor
;
functor
(
dev_ctx
,
saved_mean
,
static_cast
<
bn_param_type
<
T
>
>
(
0
));
functor
(
dev_ctx
,
saved_variance
,
static_cast
<
bn_param_type
<
T
>
>
(
0
));
auto
handle
=
dev_ctx
.
cudnn_handle
();
...
...
@@ -147,8 +150,10 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
CUDNN_BATCHNORM_SPATIAL
,
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
x
->
template
data
<
T
>(),
data_desc_
,
y
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
bn_param_desc_
,
scale
->
template
data
<
T
>(),
bias
->
template
data
<
T
>(),
est_mean
->
template
data
<
T
>(),
est_var
->
template
data
<
T
>(),
epsilon
));
bn_param_desc_
,
scale
->
template
data
<
bn_param_type
<
T
>
>
(),
bias
->
template
data
<
bn_param_type
<
T
>
>
(),
est_mean
->
template
data
<
bn_param_type
<
T
>
>
(),
est_var
->
template
data
<
bn_param_type
<
T
>
>
(),
epsilon
));
}
else
{
// Run training mode.
// obtain running mean and running inv var, and see if we need to
...
...
@@ -159,11 +164,14 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
handle
,
mode_
,
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
x
->
template
data
<
T
>(),
data_desc_
,
y
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
bn_param_desc_
,
scale
->
template
data
<
T
>(),
bias
->
template
data
<
T
>(),
this_factor
,
mean_out
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
variance_out
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
epsilon
,
saved_mean
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
saved_variance
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
())));
scale
->
template
data
<
bn_param_type
<
T
>
>
(),
bias
->
template
data
<
bn_param_type
<
T
>
>
(),
this_factor
,
mean_out
->
template
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
()),
variance_out
->
template
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
()),
epsilon
,
saved_mean
->
template
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
()),
saved_variance
->
template
mutable_data
<
bn_param_type
<
T
>
>
(
ctx
.
GetPlace
())));
}
// clean when exit.
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
e870947c
...
...
@@ -85,6 +85,9 @@ template <>
class
CudnnDataType
<
float16
>
{
public:
static
const
cudnnDataType_t
type
=
CUDNN_DATA_HALF
;
// cudnn batch norm requires that Scale, Bias, Mean, and Variance
// to be FLOAT tensors when the input x is HALF tensor
static
const
cudnnDataType_t
bn_param_type
=
CUDNN_DATA_FLOAT
;
// The scaling param type is float for HALF and FLOAT tensors
typedef
const
float
ScalingParamType
;
static
ScalingParamType
*
kOne
()
{
...
...
@@ -101,6 +104,7 @@ template <>
class
CudnnDataType
<
float
>
{
public:
static
const
cudnnDataType_t
type
=
CUDNN_DATA_FLOAT
;
static
const
cudnnDataType_t
bn_param_type
=
CUDNN_DATA_FLOAT
;
typedef
const
float
ScalingParamType
;
static
ScalingParamType
*
kOne
()
{
static
ScalingParamType
v
=
1.0
;
...
...
@@ -116,6 +120,7 @@ template <>
class
CudnnDataType
<
double
>
{
public:
static
const
cudnnDataType_t
type
=
CUDNN_DATA_DOUBLE
;
static
const
cudnnDataType_t
bn_param_type
=
CUDNN_DATA_DOUBLE
;
typedef
const
double
ScalingParamType
;
static
ScalingParamType
*
kOne
()
{
static
ScalingParamType
v
=
1.0
;
...
...
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
浏览文件 @
e870947c
...
...
@@ -193,7 +193,7 @@ class TestBatchNormOpInference(OpTest):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
place
,
data_layout
,
dtype
,
shape
):
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
):
epsilon
=
0.00001
if
len
(
shape
)
==
2
:
x_shape
=
shape
...
...
@@ -209,11 +209,11 @@ class TestBatchNormOpInference(OpTest):
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
dtype
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
dtype
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
dtype
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
dtype
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
dtype
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
data_layout
).
astype
(
dtype
)
...
...
@@ -266,9 +266,13 @@ class TestBatchNormOpInference(OpTest):
batch_norm_op
.
run
(
scope
,
place
)
# check inference result
self
.
__assert_close
(
y_tensor
,
y_out
,
"inference output are different at "
+
str
(
place
)
+
", "
+
data_layout
+
", "
+
str
(
np
.
dtype
(
dtype
)))
self
.
__assert_close
(
y_tensor
,
y_out
,
"inference output are different at "
+
str
(
place
)
+
", "
+
data_layout
+
", "
+
str
(
np
.
dtype
(
dtype
))
+
str
(
np
.
array
(
y_tensor
))
+
str
(
y_out
),
atol
=
2e-2
)
def
test_check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
...
...
@@ -277,8 +281,9 @@ class TestBatchNormOpInference(OpTest):
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
class
TestFP16BatchNormOpInference
(
TestBatchNormOpInference
):
...
...
@@ -294,9 +299,9 @@ class TestFP16BatchNormOpInference(TestBatchNormOpInference):
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
check_output
_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
check_output
_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
self
.
check
_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check
_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
class
TestBatchNormOpTraining
(
OpTest
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录