visualize.py 21.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

17
import os
Q
qingqing01 已提交
18 19
import cv2
import numpy as np
F
Feng Ni 已提交
20 21
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
22
import math
Q
qingqing01 已提交
23 24


G
Guanghua Yu 已提交
25
def visualize_box_mask(im, results, labels, threshold=0.5):
Q
qingqing01 已提交
26 27 28 29 30 31
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
                        MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
32
                        shape:[N, im_h, im_w]
Q
qingqing01 已提交
33 34 35 36 37 38 39
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
40
    elif isinstance(im, np.ndarray):
Q
qingqing01 已提交
41
        im = Image.fromarray(im)
42
    if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
Q
qingqing01 已提交
43
        im = draw_mask(
G
Guanghua Yu 已提交
44
            im, results['boxes'], results['masks'], labels, threshold=threshold)
45
    if 'boxes' in results and len(results['boxes']) > 0:
G
Guanghua Yu 已提交
46
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
Q
qingqing01 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    if 'segm' in results:
        im = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            labels,
            threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


G
Guanghua Yu 已提交
79
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
Q
qingqing01 已提交
80 81 82 83
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
G
Guanghua Yu 已提交
84 85
            matix element:[class, score, x_min, y_min, x_max, y_max]
        np_masks (np.ndarray): shape:[N, im_h, im_w]
Q
qingqing01 已提交
86 87 88 89 90 91 92 93 94 95
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of mask
    Returns:
        im (PIL.Image.Image): visualized image
    """
    color_list = get_color_map_list(len(labels))
    w_ratio = 0.4
    alpha = 0.7
    im = np.array(im).astype('float32')
    clsid2color = {}
G
Guanghua Yu 已提交
96 97 98
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
    np_masks = np_masks[expect_boxes, :, :]
W
wangguanzhong 已提交
99 100
    im_h, im_w = im.shape[:2]
    np_masks = np_masks[:, :im_h, :im_w]
G
Guanghua Yu 已提交
101 102 103
    for i in range(len(np_masks)):
        clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
        mask = np_masks[i]
Q
qingqing01 已提交
104 105 106 107 108
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
G
Guanghua Yu 已提交
109
        idx = np.nonzero(mask)
Q
qingqing01 已提交
110 111 112 113 114 115
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(im.astype('uint8'))


G
Guanghua Yu 已提交
116
def draw_box(im, np_boxes, labels, threshold=0.5):
Q
qingqing01 已提交
117 118 119 120 121 122
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
G
Guanghua Yu 已提交
123
        threshold (float): threshold of box
Q
qingqing01 已提交
124 125 126 127 128 129 130
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
G
Guanghua Yu 已提交
131 132
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
Q
qingqing01 已提交
133 134 135 136 137 138 139

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

C
cnn 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
                  'right_bottom:[{:.2f},{:.2f}]'.format(
                      int(clsid), score, xmin, ymin, xmax, ymax))
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)
Q
qingqing01 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def draw_segm(im,
              np_segms,
              np_label,
              np_score,
              labels,
              threshold=0.5,
              alpha=0.7):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = get_color_map_list(len(labels))
    im = np.array(im).astype('float32')
    clsid2color = {}
    np_segms = np_segms.astype(np.uint8)
    for i in range(np_segms.shape[0]):
G
Guanghua Yu 已提交
186
        mask, score, clsid = np_segms[i], np_score[i], np_label[i]
Q
qingqing01 已提交
187 188 189 190 191 192 193 194 195 196
        if score < threshold:
            continue

        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
C
cnn 已提交
197 198 199 200
        idx0 = np.minimum(idx[0], im.shape[0] - 1)
        idx1 = np.minimum(idx[1], im.shape[1] - 1)
        im[idx0, idx1, :] *= 1.0 - alpha
        im[idx0, idx1, :] += alpha * color_mask
Q
qingqing01 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        sum_x = np.sum(mask, axis=0)
        x = np.where(sum_x > 0.5)[0]
        sum_y = np.sum(mask, axis=1)
        y = np.where(sum_y > 0.5)[0]
        x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
        cv2.rectangle(im, (x0, y0), (x1, y1),
                      tuple(color_mask.astype('int32').tolist()), 1)
        bbox_text = '%s %.2f' % (labels[clsid], score)
        t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
        cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
                      tuple(color_mask.astype('int32').tolist()), -1)
        cv2.putText(
            im,
            bbox_text, (x0, y0 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.3, (0, 0, 0),
            1,
            lineType=cv2.LINE_AA)
    return Image.fromarray(im.astype('uint8'))
220 221 222 223 224 225 226 227


def get_color(idx):
    idx = idx * 3
    color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
    return color


W
wangguanzhong 已提交
228 229 230 231 232 233 234
def visualize_pose(imgfile,
                   results,
                   visual_thresh=0.6,
                   save_name='pose.jpg',
                   save_dir='output',
                   returnimg=False,
                   ids=None):
235 236 237 238 239
    try:
        import matplotlib.pyplot as plt
        import matplotlib
        plt.switch_backend('agg')
    except Exception as e:
F
Feng Ni 已提交
240 241
        print('Matplotlib not found, please install matplotlib.'
              'for example: `pip install matplotlib`.')
242 243
        raise e
    skeletons, scores = results['keypoint']
244
    skeletons = np.array(skeletons)
Z
zhiboniu 已提交
245 246 247
    kpt_nums = 17
    if len(skeletons) > 0:
        kpt_nums = skeletons.shape[1]
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    if kpt_nums == 17:  #plot coco keypoint
        EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
                 (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
                 (13, 15), (14, 16), (11, 12)]
    else:  #plot mpii keypoint
        EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
                 (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
                 (8, 13)]
    NUM_EDGES = len(EDGES)

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
            [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
            [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    cmap = matplotlib.cm.get_cmap('hsv')
    plt.figure()

    img = cv2.imread(imgfile) if type(imgfile) == str else imgfile

    color_set = results['colors'] if 'colors' in results else None

    if 'bbox' in results and ids is None:
        bboxs = results['bbox']
        for j, rect in enumerate(bboxs):
            xmin, ymin, xmax, ymax = rect
            color = colors[0] if color_set is None else colors[color_set[j] %
                                                               len(colors)]
            cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)

    canvas = img.copy()
    for i in range(kpt_nums):
        for j in range(len(skeletons)):
W
wangguanzhong 已提交
279
            if skeletons[j][i, 2] < visual_thresh:
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                continue
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])

            cv2.circle(
                canvas,
                tuple(skeletons[j][i, 0:2].astype('int32')),
                2,
                color,
                thickness=-1)

    to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
    fig = matplotlib.pyplot.gcf()

    stickwidth = 2

    for i in range(NUM_EDGES):
        for j in range(len(skeletons)):
            edge = EDGES[i]
W
wangguanzhong 已提交
303 304
            if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[
                    1], 2] < visual_thresh:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                continue

            cur_canvas = canvas.copy()
            X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
            Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)),
                                       (int(length / 2), stickwidth),
                                       int(angle), 0, 360, 1)
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])
            cv2.fillConvexPoly(cur_canvas, polygon, color)
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    if returnimg:
        return canvas
    save_name = os.path.join(
        save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg')
    plt.imsave(save_name, canvas[:, :, ::-1])
    print("keypoint visualize image saved to: " + save_name)
    plt.close()
332 333


334
def visualize_attr(im, results, boxes=None, is_mtmct=False):
335
    if isinstance(im, str):
336 337 338 339 340
        im = Image.open(im)
        im = np.ascontiguousarray(np.copy(im))
        im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    else:
        im = np.ascontiguousarray(np.copy(im))
341

342
    im_h, im_w = im.shape[:2]
W
wangguanzhong 已提交
343 344
    text_scale = max(0.5, im.shape[0] / 3000.)
    text_thickness = 1
345

W
wangguanzhong 已提交
346
    line_inter = im.shape[0] / 40.
347 348
    for i, res in enumerate(results):
        if boxes is None:
W
wangguanzhong 已提交
349
            text_w = 3
350
            text_h = 1
351 352 353 354
        elif is_mtmct:
            box = boxes[i]  # multi camera, bbox shape is x,y, w,h
            text_w = int(box[0]) + 3
            text_h = int(box[1])
355
        else:
356
            box = boxes[i]  # single camera, bbox shape is 0, 0, x,y, w,h
W
wangguanzhong 已提交
357
            text_w = int(box[2]) + 3
358 359 360 361 362 363 364 365
            text_h = int(box[3])
        for text in res:
            text_h += int(line_inter)
            text_loc = (text_w, text_h)
            cv2.putText(
                im,
                text,
                text_loc,
W
wangguanzhong 已提交
366 367
                cv2.FONT_ITALIC,
                text_scale, (0, 255, 255),
368
                thickness=text_thickness)
369
    return im
J
JYChen 已提交
370 371


372 373 374 375 376 377
def visualize_action(im,
                     mot_boxes,
                     action_visual_collector=None,
                     action_text="",
                     video_action_score=None,
                     video_action_text=""):
J
JYChen 已提交
378
    im = cv2.imread(im) if isinstance(im, str) else im
379 380
    im_h, im_w = im.shape[:2]

381
    text_scale = max(1, im.shape[1] / 400.)
382 383 384
    text_thickness = 2

    if action_visual_collector:
J
JYChen 已提交
385 386 387 388 389 390
        id_action_dict = {}
        for collector, action_type in zip(action_visual_collector, action_text):
            id_detected = collector.get_visualize_ids()
            for pid in id_detected:
                id_action_dict[pid] = id_action_dict.get(pid, [])
                id_action_dict[pid].append(action_type)
391 392
        for mot_box in mot_boxes:
            # mot_box is a format with [mot_id, class, score, xmin, ymin, w, h] 
J
JYChen 已提交
393
            if mot_box[0] in id_action_dict:
394 395
                text_position = (int(mot_box[3] + mot_box[5] * 0.75),
                                 int(mot_box[4] - 10))
J
JYChen 已提交
396 397
                display_text = ', '.join(id_action_dict[mot_box[0]])
                cv2.putText(im, display_text, text_position,
398 399 400 401 402 403 404 405 406 407 408
                            cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2)

    if video_action_score:
        cv2.putText(
            im,
            video_action_text + ': %.2f' % video_action_score,
            (int(im_w / 2), int(15 * text_scale) + 5),
            cv2.FONT_ITALIC,
            text_scale, (0, 0, 255),
            thickness=text_thickness)

J
JYChen 已提交
409
    return im
Z
zhiboniu 已提交
410 411 412 413 414 415 416 417 418 419 420


def visualize_vehicleplate(im, results, boxes=None):
    if isinstance(im, str):
        im = Image.open(im)
        im = np.ascontiguousarray(np.copy(im))
        im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    else:
        im = np.ascontiguousarray(np.copy(im))

    im_h, im_w = im.shape[:2]
421
    text_scale = max(1.0, im.shape[0] / 400.)
Z
zhiboniu 已提交
422
    text_thickness = 2
Z
zhiboniu 已提交
423 424 425 426 427 428 429 430 431 432 433 434

    line_inter = im.shape[0] / 40.
    for i, res in enumerate(results):
        if boxes is None:
            text_w = 3
            text_h = 1
        else:
            box = boxes[i]
            text = res
            if text == "":
                continue
            text_w = int(box[2])
Z
zhiboniu 已提交
435
            text_h = int(box[5] + box[3])
Z
zhiboniu 已提交
436 437 438
            text_loc = (text_w, text_h)
            cv2.putText(
                im,
Z
zhiboniu 已提交
439
                "LP: " + text,
Z
zhiboniu 已提交
440 441 442 443 444
                text_loc,
                cv2.FONT_ITALIC,
                text_scale, (0, 255, 255),
                thickness=text_thickness)
    return im
L
LokeZhou 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579


def draw_press_box_lanes(im, np_boxes, labels, threshold=0.5):
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of box
    Returns:
        im (PIL.Image.Image): visualized image
    """

    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    elif isinstance(im, np.ndarray):
        im = Image.fromarray(im)

    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))

    if np_boxes.shape[1] == 7:
        np_boxes = np_boxes[:, 1:]

    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=(0, 0, 255))
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)

        # draw label
        text = "{}".format(labels[clsid])
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymax - th), (xmin + tw + 1, ymax)], fill=color)
        draw.text((xmin + 1, ymax - th), text, fill=(0, 0, 255))
    return im


def visualize_vehiclepress(im, results, threshold=0.5):
    results = np.array(results)
    labels = ['violation']
    im = draw_press_box_lanes(im, results, labels, threshold=threshold)
    return im


def visualize_lane(im, lanes):
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    elif isinstance(im, np.ndarray):
        im = Image.fromarray(im)

    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)

    if len(lanes) > 0:
        for lane in lanes:
            draw.line(
                [(lane[0], lane[1]), (lane[2], lane[3])],
                width=draw_thickness,
                fill=(0, 0, 255))

    return im


def visualize_vehicle_retrograde(im, mot_res, vehicle_retrograde_res):
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    elif isinstance(im, np.ndarray):
        im = Image.fromarray(im)

    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)

    lane = vehicle_retrograde_res['fence_line']
    if lane is not None:
        draw.line(
            [(lane[0], lane[1]), (lane[2], lane[3])],
            width=draw_thickness,
            fill=(0, 0, 0))

    mot_id = vehicle_retrograde_res['output']
    if mot_id is None or len(mot_id) == 0:
        return im

    if mot_res is None:
        return im
    np_boxes = mot_res['boxes']

    if np_boxes is not None:
        for dt in np_boxes:
            if dt[0] not in mot_id:
                continue
            bbox = dt[3:]
            if len(bbox) == 4:
                xmin, ymin, xmax, ymax = bbox
                # draw bbox
                draw.line(
                    [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                     (xmin, ymin)],
                    width=draw_thickness,
                    fill=(0, 255, 0))

            # draw label
            text = "retrograde"
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmax + 1, ymin - th), (xmax + tw + 1, ymin)],
                fill=(0, 255, 0))
            draw.text((xmax + 1, ymin - th), text, fill=(0, 255, 0))

    return im
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639


COLORS = [
    (255, 0, 0),
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 255),
    (128, 255, 0),
    (255, 128, 0),
    (128, 0, 255),
    (255, 0, 128),
    (0, 128, 255),
    (0, 255, 128),
    (128, 255, 255),
    (255, 128, 255),
    (255, 255, 128),
    (60, 180, 0),
    (180, 60, 0),
    (0, 60, 180),
    (0, 180, 60),
    (60, 0, 180),
    (180, 0, 60),
    (255, 0, 0),
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 255),
    (128, 255, 0),
    (255, 128, 0),
    (128, 0, 255),
]


def imshow_lanes(img, lanes, show=False, out_file=None, width=4):
    lanes_xys = []
    for _, lane in enumerate(lanes):
        xys = []
        for x, y in lane:
            if x <= 0 or y <= 0:
                continue
            x, y = int(x), int(y)
            xys.append((x, y))
        lanes_xys.append(xys)
    lanes_xys.sort(key=lambda xys: xys[0][0] if len(xys) > 0 else 0)

    for idx, xys in enumerate(lanes_xys):
        for i in range(1, len(xys)):
            cv2.line(img, xys[i - 1], xys[i], COLORS[idx], thickness=width)

    if show:
        cv2.imshow('view', img)
        cv2.waitKey(0)

    if out_file:
        if not os.path.exists(os.path.dirname(out_file)):
            os.makedirs(os.path.dirname(out_file))
        cv2.imwrite(out_file, img)