test_dist_transpiler.py 30.0 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
tangwei12 已提交
17 18
import math

19
import unittest
20
import paddle.fluid as fluid
Y
Yancey 已提交
21
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
W
Wu Yi 已提交
22
import traceback
G
gongweibao 已提交
23
import collections
M
minqiyang 已提交
24
import six
25

Y
Yancey 已提交
26

W
Wu Yi 已提交
27
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
28
    def setUp(self):
W
Wu Yi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
54
        main.random_seed = 1
W
Wu Yi 已提交
55 56 57 58 59
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

G
gongweibao 已提交
60 61 62 63 64
    def get_trainer(self, config=None):
        src = fluid.default_startup_program().clone()

        t = self._transpiler_instance(config)

W
Wu Yi 已提交
65
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
66 67 68 69 70 71
        trainer_startup = fluid.default_startup_program()

        assert (src.num_blocks == 1)
        assert (trainer_startup.num_blocks == src.num_blocks)

        return trainer_main, trainer_startup
W
Wu Yi 已提交
72

Q
qiaolongfei 已提交
73 74
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
75 76 77 78
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
79
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
80 81
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
82
            self.transpiler = fluid.DistributeTranspiler(config=config)
W
Wu Yi 已提交
83 84 85 86
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
Q
qiaolongfei 已提交
87 88
                trainers=self.trainers,
                sync_mode=sync_mode)
G
gongweibao 已提交
89

W
Wu Yi 已提交
90
        return self.transpiler
Y
Yancey 已提交
91

Q
qiaolongfei 已提交
92 93
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
94

Y
Yancey 已提交
95
    def test_transpiler(self):
Q
qiaolongfei 已提交
96 97
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
98 99 100
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
Q
qiaolongfei 已提交
101 102 103 104


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
105 106 107
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        trainer, trainer_startup = self.get_trainer()

        # splited var blocks should be in startup program
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
        dst = ['fill_constant', 'fill_constant', 'uniform_random', 'recv', 'recv', \
               'fetch_barrier', 'concat']

        self.assertEqual(src, dst)
W
Wu Yi 已提交
123 124 125 126 127 128 129

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
130 131 132 133 134

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
135
        # block1~2: optimize pass
Y
Yancey 已提交
136 137 138
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
139 140
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
141
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
142 143
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
165
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
166
    def transpiler_test_impl(self):
G
gongweibao 已提交
167 168 169 170 171 172
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
173
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
191
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
192 193
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
194
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
216 217 218 219
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
220
    def transpiler_test_impl(self):
G
gongweibao 已提交
221 222 223 224 225
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
226

227
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
228
            fc_w_var = startup.global_block().vars["fc_w"]
229
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
230 231 232
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
233 234


W
Wu Yi 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
254
    def transpiler_test_impl(self):
W
Wu Yi 已提交
255
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
256
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
257 258 259 260 261 262 263 264 265 266

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
class TestDecayedAdagrad(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
302
    def transpiler_test_impl(self):
W
Wu Yi 已提交
303
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
304
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
305 306 307 308

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
309
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(
                name='fc_w',
                regularizer=fluid.regularizer.L2Decay(),
                gradient_clip=fluid.clip.GradientClipByValue(0.1)),
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
350
    def transpiler_test_impl(self):
W
Wu Yi 已提交
351
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
352
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
353 354 355 356 357 358 359 360 361

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "elementwise_add", "sgd"])
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
362

T
typhoonzero 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
384
    def transpiler_test_impl(self):
T
typhoonzero 已提交
385
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
386
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
Y
Yancey 已提交
406 407


408 409
class TestDistLookupTableBase(TranspilerTest):
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
410 411
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
412
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
413

414 415 416
        def emb_pool(ids):
            emb = fluid.layers.embedding(
                input=ids,
T
tangwei12 已提交
417
                size=[self.table_size, self.emb_size],
418
                dtype='float32',
T
tangwei12 已提交
419
                param_attr=self.lookup_table_name,  # share parameter
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
                is_sparse=is_sparse,
                is_distributed=is_distributed)
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1)
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
        title_emb = emb_pool(title_ids)
        brand_emb = emb_pool(brand_ids)
        fc0 = fluid.layers.concat(input=[title_emb, brand_emb], axis=1)
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
Q
qiaolongfei 已提交
460
                         ["sum", "scale", "adam", "scale", "scale"])
Q
qiaolongfei 已提交
461

G
gongweibao 已提交
462
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send',
            'send_barrier', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


476 477 478 479 480 481 482
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

483
        self.assertEqual(len(pserver1.blocks), 5)
484 485 486 487 488 489 490 491 492 493
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
494 495
        # 4 save table
        self.assertEqual([op.type for op in pserver1.blocks[4].ops], ["save"])
496

497
        trainer, trainer_startup = self.get_trainer()
498 499
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
500 501 502 503 504 505 506
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
            'sequence_pool', 'concat', 'mul', 'elementwise_add',
            'cross_entropy', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad',
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sum', 'split_ids',
            'send', 'send_barrier', 'recv', 'recv', 'fetch_barrier'
507 508 509
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)

510 511 512 513 514 515 516 517 518 519
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random', 'recv', 'recv',
            'fetch_barrier', 'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)

520

Q
qiaolongfei 已提交
521 522 523 524 525 526
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
527
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
528 529 530 531 532 533 534 535 536 537 538

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])

G
gongweibao 已提交
539
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send', 'recv',
            'recv', 'recv', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
553 554 555 556 557 558 559
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
560
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
561

562
        self.assertEqual(len(pserver1.blocks), 5)
Q
qiaolongfei 已提交
563 564 565 566 567 568 569 570 571
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
572 573
        # 4 save table
        self.assertEqual([op.type for op in pserver1.blocks[4].ops], ["save"])
Q
qiaolongfei 已提交
574

G
gongweibao 已提交
575
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
576 577
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
578 579 580 581 582 583 584
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
            'sequence_pool', 'concat', 'mul', 'elementwise_add',
            'cross_entropy', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad',
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sum', 'split_ids',
            'send', 'recv', 'recv'
Q
qiaolongfei 已提交
585 586 587 588
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


T
tangwei12 已提交
589
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
590 591 592 593 594
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
595
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
596 597 598 599 600 601 602

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
            self.transpiler.table_name]
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
603 604


T
tangwei12 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
        self.assertEqual(trainer._distributed_lookup_table,
                         self.lookup_table_name)
        self.assertEqual(trainer._endpoints,
                         [self.pserver1_ep, self.pserver2_ep])


W
Wu Yi 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "rmsprop"])
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

T
tangwei12 已提交
667 668
        self.assertTrue(pserver._slice_vars_and_attrs)
        self.assertTrue(pserver2._slice_vars_and_attrs)
T
tangwei12 已提交
669

M
minqiyang 已提交
670
        for idx in six.moves.xrange(len(pserver._slice_vars_and_attrs)):
T
tangwei12 已提交
671 672
            self.assertEqual(pserver._slice_vars_and_attrs[idx][0],
                             pserver2._slice_vars_and_attrs[idx][0])
T
tangwei12 已提交
673

M
minqiyang 已提交
674 675
            total_numel = six.moves.reduce(
                lambda x, y: x * y, pserver._slice_vars_and_attrs[idx][0].shape)
T
tangwei12 已提交
676 677
            self.assertEqual(
                total_numel,
M
minqiyang 已提交
678 679 680 681
                six.moves.reduce(lambda x, y: x * y,
                                 pserver._slice_vars_and_attrs[idx][2].shape) +
                six.moves.reduce(lambda x, y: x * y,
                                 pserver2._slice_vars_and_attrs[idx][2].shape))
T
tangwei12 已提交
682 683


W
Wu Yi 已提交
684 685
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
J
JiabinYang 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        if fluid.core.is_compiled_with_cuda():  #test nccl2 only with cuda
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup)
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
        else:
            pass
W
Wu Yi 已提交
705 706


Y
Yancey 已提交
707 708
if __name__ == "__main__":
    unittest.main()