debugger.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16
import re
17 18
from .graphviz import GraphPreviewGenerator
from .proto import framework_pb2
G
gongweibao 已提交
19
from google.protobuf import text_format
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
_vartype2str_ = [
    "UNK",
    "LoDTensor",
    "SelectedRows",
    "FeedMinibatch",
    "FetchList",
    "StepScopes",
    "LodRankTable",
    "LoDTensorArray",
    "PlaceList",
]
_dtype2str_ = [
    "bool",
    "int16",
    "int32",
    "int64",
    "float16",
    "float32",
    "float64",
]


def repr_data_type(type):
    return _dtype2str_[type]


def repr_tensor(proto):
    return "tensor(type={}, shape={})".format(_dtype2str_[int(proto.data_type)],
                                              str(proto.dims))


reprtpl = "{ttype} {name} ({reprs})"


def repr_lodtensor(proto):
G
gongweibao 已提交
56 57 58 59 60
    if proto.type.type != framework_pb2.VarType.LOD_TENSOR:
        return

    level = proto.type.lod_tensor.lod_level
    reprs = repr_tensor(proto.type.lod_tensor.tensor)
61 62 63 64 65 66 67
    return reprtpl.format(
        ttype="LoDTensor" if level > 0 else "Tensor",
        name=proto.name,
        reprs="level=%d, %s" % (level, reprs) if level > 0 else reprs)


def repr_selected_rows(proto):
G
gongweibao 已提交
68 69 70
    if proto.type.type != framework_pb2.VarType.SELECTED_ROWS:
        return

71 72 73
    return reprtpl.format(
        ttype="SelectedRows",
        name=proto.name,
G
gongweibao 已提交
74
        reprs=repr_tensor(proto.type.selected_rows))
75 76 77


def repr_tensor_array(proto):
G
gongweibao 已提交
78 79 80
    if proto.type.type != framework_pb2.VarType.LOD_TENSOR_ARRAY:
        return

81 82 83
    return reprtpl.format(
        ttype="TensorArray",
        name=proto.name,
G
gongweibao 已提交
84 85
        reprs="level=%d, %s" % (proto.type.tensor_array.lod_level,
                                repr_tensor(proto.type.lod_tensor.tensor)))
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


type_handlers = [
    repr_lodtensor,
    repr_selected_rows,
    repr_tensor_array,
]


def repr_var(vardesc):
    for handler in type_handlers:
        res = handler(vardesc)
        if res:
            return res


def pprint_program_codes(program_desc):
    reprs = []
G
gongweibao 已提交
104
    for block_idx in range(program_desc.desc.num_blocks()):
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        block_desc = program_desc.block(block_idx)
        block_repr = pprint_block_codes(block_desc)
        reprs.append(block_repr)
    return '\n'.join(reprs)


def pprint_block_codes(block_desc, show_backward=False):
    def is_op_backward(op_desc):
        if op_desc.type.endswith('_grad'): return True

        def is_var_backward(var):
            if "@GRAD" in var.parameter: return True
            for arg in var.arguments:
                if "@GRAD" in arg: return True

        for var in op_desc.inputs:
            if is_var_backward(var): return True
        for var in op_desc.outputs:
            if is_var_backward(var): return True
        return False

    def is_var_backward(var_desc):
        return "@GRAD" in var_desc.name

    if type(block_desc) is not framework_pb2.BlockDesc:
        block_desc = framework_pb2.BlockDesc.FromString(
G
gongweibao 已提交
131
            block_desc.desc.serialize_to_string())
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    var_reprs = []
    op_reprs = []
    for var in block_desc.vars:
        if not show_backward and is_var_backward(var):
            continue
        var_reprs.append(repr_var(var))

    for op in block_desc.ops:
        if not show_backward and is_op_backward(op): continue
        op_reprs.append(repr_op(op))

    tpl = "// block-{idx}  parent-{pidx}\n// variables\n{vars}\n\n// operators\n{ops}\n"
    return tpl.format(
        idx=block_desc.idx,
        pidx=block_desc.parent_idx,
        vars='\n'.join(var_reprs),
        ops='\n'.join(op_reprs), )


def repr_attr(desc):
    tpl = "{key}={value}"
    valgetter = [
        lambda attr: attr.i,
        lambda attr: attr.f,
        lambda attr: attr.s,
        lambda attr: attr.ints,
        lambda attr: attr.floats,
        lambda attr: attr.strings,
        lambda attr: attr.b,
        lambda attr: attr.bools,
        lambda attr: attr.block_idx,
        lambda attr: attr.l,
    ]
    key = desc.name
    value = valgetter[desc.type](desc)
    if key == "dtype":
        value = repr_data_type(value)
    return tpl.format(key=key, value=str(value)), (key, value)


def _repr_op_fill_constant(optype, inputs, outputs, attrs):
    if optype == "fill_constant":
        return "{output} = {data} [shape={shape}]".format(
            output=','.join(outputs),
            data=attrs['value'],
            shape=str(attrs['shape']))


op_repr_handlers = [_repr_op_fill_constant, ]


def repr_op(opdesc):
    optype = None
    attrs = []
    attr_dict = {}
    is_target = None
    inputs = []
    outputs = []

    tpl = "{outputs} = {optype}({inputs}{is_target}) [{attrs}]"
    args2value = lambda args: args[0] if len(args) == 1 else str(list(args))
    for var in opdesc.inputs:
        key = var.parameter
        value = args2value(var.arguments)
        inputs.append("%s=%s" % (key, value))
    for var in opdesc.outputs:
        value = args2value(var.arguments)
        outputs.append(value)
    for attr in opdesc.attrs:
        attr_repr, attr_pair = repr_attr(attr)
        attrs.append(attr_repr)
        attr_dict[attr_pair[0]] = attr_pair[1]

    is_target = opdesc.is_target

    for handler in op_repr_handlers:
        res = handler(opdesc.type, inputs, outputs, attr_dict)
        if res: return res

    return tpl.format(
        outputs=', '.join(outputs),
        optype=opdesc.type,
        inputs=', '.join(inputs),
        attrs="{%s}" % ','.join(attrs),
        is_target=", is_target" if is_target else "")

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

def draw_block_graphviz(block, highlights=None, path="./temp.dot"):
    '''
    Generate a debug graph for block.
    Args:
        block(Block): a block.
    '''
    graph = GraphPreviewGenerator("some graph")
    # collect parameters and args
    protostr = block.desc.serialize_to_string()
    desc = framework_pb2.BlockDesc.FromString(str(protostr))

    def need_highlight(name):
        if highlights is None: return False
        for pattern in highlights:
            assert type(pattern) is str
            if re.match(pattern, name):
                return True
        return False

    # draw parameters and args
    vars = {}
    for var in desc.vars:
G
gongweibao 已提交
241
        # TODO(gongwb): format the var.type
242 243 244
        # create var
        if var.persistable:
            varn = graph.add_param(
G
gongweibao 已提交
245 246 247
                var.name,
                str(var.type).replace("\n", "<br />", 1),
                highlight=need_highlight(var.name))
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        else:
            varn = graph.add_arg(var.name, highlight=need_highlight(var.name))
        vars[var.name] = varn

    def add_op_link_var(op, var, op2var=False):
        for arg in var.arguments:
            if arg not in vars:
                # add missing variables as argument
                vars[arg] = graph.add_arg(arg, highlight=need_highlight(arg))
            varn = vars[arg]
            highlight = need_highlight(op.description) or need_highlight(
                varn.description)
            if op2var:
                graph.add_edge(op, varn, highlight=highlight)
            else:
                graph.add_edge(varn, op, highlight=highlight)

    for op in desc.ops:
        opn = graph.add_op(op.type, highlight=need_highlight(op.type))
        for var in op.inputs:
            add_op_link_var(opn, var, False)
        for var in op.outputs:
            add_op_link_var(opn, var, True)

G
gongweibao 已提交
272
    graph(path, show=False)