tracker.py 21.1 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
27
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
G
George Ni 已提交
28 29 30
from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis

G
George Ni 已提交
31
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
G
George Ni 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
G
George Ni 已提交
77 78
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
79
        else:
80
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
108 109 110 111
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
112 113 114 115 116

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
117 118
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            # forward
            timer.tic()
137 138
            pred_dets, pred_embs = self.model(data)
            online_targets = self.model.tracker.update(pred_dets, pred_embs)
G
George Ni 已提交
139

140
            online_tlwhs, online_scores, online_ids = [], [], []
G
George Ni 已提交
141 142 143
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
G
George Ni 已提交
144
                tscore = t.score
145
                if tscore < draw_threshold: continue
F
Feng Ni 已提交
146 147 148 149 150 151 152
                if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
                online_scores.append(tscore)
G
George Ni 已提交
153 154 155
            timer.toc()

            # save results
G
George Ni 已提交
156 157
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
158
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
159 160
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
161 162 163 164 165 166 167 168 169
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
170
                      scaled=False,
171 172
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

G
George Ni 已提交
194 195 196 197
            ori_image = data['ori_image']
            input_shape = data['image'].shape[2:]
            im_shape = data['im_shape']
            scale_factor = data['scale_factor']
198 199

            # forward
G
George Ni 已提交
200 201 202 203 204
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                if bbox_tlwh.shape[0] > 0:
205 206 207 208 209
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = paddle.to_tensor(
                        dets['cls_id'], dtype='float32').unsqueeze(1)
                    pred_scores = paddle.to_tensor(
                        dets['score'], dtype='float32').unsqueeze(1)
G
George Ni 已提交
210 211 212 213 214
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
215 216 217 218 219
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
                    frame_id += 1
                    continue
G
George Ni 已提交
220 221 222
            else:
                outs = self.model.detector(data)
                if outs['bbox_num'] > 0:
223 224 225
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
226
                    if not scaled:
227 228 229
                        # scaled means whether the coords after detector outputs
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
230 231 232 233 234
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
G
George Ni 已提交
235
                else:
236 237 238 239 240
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
                    frame_id += 1
                    continue
G
George Ni 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
            pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                            scale_factor)
            pred_scores = paddle.gather_nd(pred_scores, keep_idx).unsqueeze(1)
            pred_cls_ids = paddle.gather_nd(pred_cls_ids, keep_idx).unsqueeze(1)
            pred_tlwhs = paddle.concat(
                (pred_xyxys[:, 0:2],
                 pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
                axis=1)
            pred_dets = paddle.concat(
                (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

            tracker = self.model.tracker
            crops = get_crops(
                pred_xyxys,
                ori_image,
                w=tracker.input_size[0],
                h=tracker.input_size[1])
G
George Ni 已提交
259 260 261
            crops = paddle.to_tensor(crops)

            data.update({'crops': crops})
262 263 264 265 266 267 268 269
            pred_embs = self.model(data)

            tracker.predict()
            online_targets = tracker.update(pred_dets, pred_embs)

            online_tlwhs, online_scores, online_ids = [], [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
270
                    continue
271 272 273 274 275 276 277 278 279 280 281
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if tscore < draw_threshold: continue
                if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
G
George Ni 已提交
282 283 284
            timer.toc()

            # save results
G
George Ni 已提交
285 286
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
287
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
288 289
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
303
                     scaled=False,
G
George Ni 已提交
304 305 306 307 308 309 310 311 312 313
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
314

G
George Ni 已提交
315 316 317
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
G
George Ni 已提交
318 319 320 321 322 323 324 325
            if not os.path.isdir(os.path.join(data_root, seq)):
                continue
            infer_dir = os.path.join(data_root, seq, 'img1')
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
            if not os.path.exists(seqinfo) or not os.path.exists(
                    infer_dir) or not os.path.isdir(infer_dir):
                continue

G
George Ni 已提交
326 327 328 329 330 331 332 333 334 335
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

            images = self.get_infer_images(infer_dir)
            self.dataset.set_images(images)

            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
G
George Ni 已提交
336
            meta_info = open(seqinfo).read()
G
George Ni 已提交
337 338
            frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                       meta_info.find('\nseqLength')])
G
George Ni 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
352
                        scaled=scaled,
G
George Ni 已提交
353 354 355 356
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
357 358 359 360 361 362 363

            self.write_mot_results(result_filename, results, data_type)
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
364 365
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
366
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
409
                    frame_rate,
G
George Ni 已提交
410
                    image_dir,
G
George Ni 已提交
411 412 413 414 415 416
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
417
                    scaled=False,
418 419
                    det_results_dir='',
                    draw_threshold=0.5):
G
George Ni 已提交
420 421 422 423 424 425 426
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
427 428 429 430 431 432 433 434
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

G
George Ni 已提交
435 436 437
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
438
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
452 453 454 455 456
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
457 458
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
459

G
George Ni 已提交
460 461 462 463 464 465
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
466 467
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
468 469 470 471 472 473
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
474
                    scaled=scaled,
G
George Ni 已提交
475
                    det_file=os.path.join(det_results_dir,
476 477
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
478 479
            else:
                raise ValueError(model_type)
G
George Ni 已提交
480

G
George Ni 已提交
481 482
        self.write_mot_results(result_filename, results, data_type)

G
George Ni 已提交
483
        if save_videos:
G
George Ni 已提交
484 485
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
486
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
487 488 489 490 491 492
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))

    def write_mot_results(self, filename, results, data_type='mot'):
        if data_type in ['mot', 'mcmot', 'lab']:
G
George Ni 已提交
493
            save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
G
George Ni 已提交
494
        elif data_type == 'kitti':
G
George Ni 已提交
495
            save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
G
George Ni 已提交
496 497 498 499
        else:
            raise ValueError(data_type)

        with open(filename, 'w') as f:
G
George Ni 已提交
500
            for frame_id, tlwhs, tscores, track_ids in results:
G
George Ni 已提交
501 502
                if data_type == 'kitti':
                    frame_id -= 1
G
George Ni 已提交
503
                for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
G
George Ni 已提交
504 505 506 507 508 509 510 511 512 513 514 515
                    if track_id < 0:
                        continue
                    x1, y1, w, h = tlwh
                    x2, y2 = x1 + w, y1 + h
                    line = save_format.format(
                        frame=frame_id,
                        id=track_id,
                        x1=x1,
                        y1=y1,
                        x2=x2,
                        y2=y2,
                        w=w,
G
George Ni 已提交
516 517
                        h=h,
                        score=score)
G
George Ni 已提交
518 519 520 521
                    f.write(line)
        logger.info('MOT results save in {}'.format(filename))

    def save_results(self, data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
522
                     online_scores, average_time, show_image, save_dir):
G
George Ni 已提交
523 524 525 526 527 528 529
        if show_image or save_dir is not None:
            assert 'ori_image' in data
            img0 = data['ori_image'].numpy()[0]
            online_im = mot_vis.plot_tracking(
                img0,
                online_tlwhs,
                online_ids,
G
George Ni 已提交
530
                online_scores,
G
George Ni 已提交
531 532 533 534 535 536 537 538
                frame_id=frame_id,
                fps=1. / average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)