reader.py 9.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
15
import os
Q
qingqing01 已提交
16 17 18 19 20 21 22 23 24 25 26
import copy
import traceback
import six
import sys
import multiprocessing as mp
if sys.version_info >= (3, 0):
    import queue as Queue
else:
    import Queue
import numpy as np

27 28
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
Q
qingqing01 已提交
29 30 31

from ppdet.core.workspace import register, serializable, create
from . import transform
K
Kaipeng Deng 已提交
32
from .shm_utils import _get_shared_memory_size_in_M
Q
qingqing01 已提交
33 34 35 36

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

K
Kaipeng Deng 已提交
37 38
MAIN_PID = os.getpid()

Q
qingqing01 已提交
39 40

class Compose(object):
41
    def __init__(self, transforms, num_classes=80):
Q
qingqing01 已提交
42 43 44 45 46
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
47 48 49
                self.transforms_cls.append(op_cls(**v))
                if hasattr(op_cls, 'num_classes'):
                    op_cls.num_classes = num_classes
Q
qingqing01 已提交
50 51 52 53 54 55 56

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
57 58 59
                logger.warn("fail to map sample transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
60 61 62 63 64 65
                raise e

        return data


class BatchCompose(Compose):
66
    def __init__(self, transforms, num_classes=80, collate_batch=True):
Q
qingqing01 已提交
67
        super(BatchCompose, self).__init__(transforms, num_classes)
68
        self.collate_batch = collate_batch
Q
qingqing01 已提交
69 70 71 72 73 74 75

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
76 77 78
                logger.warn("fail to map batch transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
79 80
                raise e

81 82 83 84 85 86 87 88 89
        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
90
        if self.collate_batch:
91
            batch_data = default_collate_fn(data)
92
        else:
93 94
            batch_data = {}
            for k in data[0].keys():
95 96 97 98 99
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
                if not 'gt_' in k and not 'is_crowd' in k:
                    tmp_data = np.stack(tmp_data, axis=0)
100
                batch_data[k] = tmp_data
Q
qingqing01 已提交
101 102 103 104 105

        return batch_data


class BaseDataLoader(object):
K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        drop_empty (bool): whether to drop samples with no ground
                           truth labels, default True
        num_classes (int): class number of dataset, default 80
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

Q
qingqing01 已提交
131 132 133 134 135 136 137
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
138
                 num_classes=80,
139
                 collate_batch=True,
K
Kaipeng Deng 已提交
140
                 use_shared_memory=False,
Q
qingqing01 已提交
141 142 143 144 145 146
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
147 148
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
Q
qingqing01 已提交
149 150 151
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
K
Kaipeng Deng 已提交
152
        self.use_shared_memory = use_shared_memory
Q
qingqing01 已提交
153 154 155 156 157 158
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
K
Kaipeng Deng 已提交
159
                 return_list=False):
Q
qingqing01 已提交
160
        self.dataset = dataset
K
Kaipeng Deng 已提交
161
        self.dataset.check_or_download_dataset()
162
        self.dataset.parse_dataset()
Q
qingqing01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

K
Kaipeng Deng 已提交
177 178 179 180 181 182 183 184 185
        use_shared_memory = self.use_shared_memory
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warn("Shared memory size is less than 1G, "
                            "disable shared_memory in DataLoader")
                use_shared_memory = False

Q
qingqing01 已提交
186 187 188 189 190 191
        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
K
Kaipeng Deng 已提交
192
            use_shared_memory=use_shared_memory)
Q
qingqing01 已提交
193 194 195 196 197 198 199 200 201 202 203 204
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        try:
205
            return next(self.loader)
Q
qingqing01 已提交
206 207 208 209 210 211 212 213 214 215 216
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
217 218
    __shared__ = ['num_classes']

Q
qingqing01 已提交
219 220 221 222 223 224 225
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 drop_empty=True,
226
                 num_classes=80,
227
                 collate_batch=True,
Q
qingqing01 已提交
228
                 **kwargs):
229 230 231
        super(TrainReader, self).__init__(
            sample_transforms, batch_transforms, batch_size, shuffle, drop_last,
            drop_empty, num_classes, collate_batch, **kwargs)
Q
qingqing01 已提交
232 233 234 235


@register
class EvalReader(BaseDataLoader):
236 237
    __shared__ = ['num_classes']

Q
qingqing01 已提交
238 239 240 241 242 243 244
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
                 drop_empty=True,
245
                 num_classes=80,
Q
qingqing01 已提交
246
                 **kwargs):
K
Kaipeng Deng 已提交
247 248 249
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         drop_empty, num_classes, **kwargs)
Q
qingqing01 已提交
250 251 252 253


@register
class TestReader(BaseDataLoader):
254 255
    __shared__ = ['num_classes']

Q
qingqing01 已提交
256 257 258 259 260 261 262
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
263
                 num_classes=80,
Q
qingqing01 已提交
264
                 **kwargs):
K
Kaipeng Deng 已提交
265 266 267
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         drop_empty, num_classes, **kwargs)