reader.py 10.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
15
import os
Q
qingqing01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import copy
import traceback
import six
import sys
import multiprocessing as mp
if sys.version_info >= (3, 0):
    import queue as Queue
else:
    import Queue
import numpy as np

from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler

from ppdet.core.workspace import register, serializable, create
from . import transform
K
Kaipeng Deng 已提交
32
from .shm_utils import _get_shared_memory_size_in_M
Q
qingqing01 已提交
33 34 35 36

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

K
Kaipeng Deng 已提交
37 38
MAIN_PID = os.getpid()

Q
qingqing01 已提交
39 40

class Compose(object):
41
    def __init__(self, transforms, num_classes=80):
Q
qingqing01 已提交
42 43 44 45 46
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
47 48 49 50 51
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes

                self.transforms_cls.append(f)
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
                            format(f, e, str(stack_info)))
                raise e

        return data


class BatchCompose(Compose):
67
    def __init__(self, transforms, num_classes=80, collate_batch=True):
Q
qingqing01 已提交
68 69 70
        super(BatchCompose, self).__init__(transforms, num_classes)
        self.output_fields = mp.Manager().list([])
        self.lock = mp.Lock()
71
        self.collate_batch = collate_batch
Q
qingqing01 已提交
72 73 74 75 76 77 78 79 80 81 82

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
                            format(f, e, str(stack_info)))
                raise e

K
Kaipeng Deng 已提交
83 84 85 86 87 88 89 90 91
        # accessing ListProxy in main process (no worker subprocess)
        # may incur errors in some enviroments, ListProxy back to
        # list if no worker process start, while this `__call__`
        # will be called in main process
        global MAIN_PID
        if os.getpid() == MAIN_PID and \
            isinstance(self.output_fields, mp.managers.ListProxy):
            self.output_fields = []

Q
qingqing01 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        # parse output fields by first sample
        # **this shoule be fixed if paddle.io.DataLoader support**
        # For paddle.io.DataLoader not support dict currently,
        # we need to parse the key from the first sample,
        # BatchCompose.__call__ will be called in each worker
        # process, so lock is need here.
        if len(self.output_fields) == 0:
            self.lock.acquire()
            if len(self.output_fields) == 0:
                for k, v in data[0].items():
                    # FIXME(dkp): for more elegent coding
                    if k not in ['flipped', 'h', 'w']:
                        self.output_fields.append(k)
            self.lock.release()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        batch_data = []
        # If set collate_batch=True, all data will collate a batch
        # and it will transfor to paddle.tensor.
        # If set collate_batch=False, `image`, `im_shape` and
        # `scale_factor` will collate a batch, but `gt` data(such as:
        # gt_bbox, gt_class, gt_poly.etc.) will not collate a batch
        # and it will transfor to list[Tensor] or list[list].
        if self.collate_batch:
            data = [[data[i][k] for k in self.output_fields]
                    for i in range(len(data))]
            data = list(zip(*data))
            batch_data = [np.stack(d, axis=0) for d in data]
        else:
            for k in self.output_fields:
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
                if not 'gt_' in k and not 'is_crowd' in k:
                    tmp_data = np.stack(tmp_data, axis=0)
                batch_data.append(tmp_data)
Q
qingqing01 已提交
127 128 129 130 131

        return batch_data


class BaseDataLoader(object):
K
Kaipeng Deng 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        drop_empty (bool): whether to drop samples with no ground
                           truth labels, default True
        num_classes (int): class number of dataset, default 80
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

Q
qingqing01 已提交
157 158 159 160 161 162 163
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
164
                 num_classes=80,
165
                 collate_batch=True,
K
Kaipeng Deng 已提交
166
                 use_shared_memory=False,
Q
qingqing01 已提交
167 168 169 170 171 172
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
173 174
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
Q
qingqing01 已提交
175 176 177
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
K
Kaipeng Deng 已提交
178
        self.use_shared_memory = use_shared_memory
Q
qingqing01 已提交
179 180 181 182 183 184
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
K
Kaipeng Deng 已提交
185
                 return_list=False):
Q
qingqing01 已提交
186
        self.dataset = dataset
187
        self.dataset.parse_dataset()
Q
qingqing01 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

K
Kaipeng Deng 已提交
202 203 204 205 206 207 208 209 210
        use_shared_memory = self.use_shared_memory
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warn("Shared memory size is less than 1G, "
                            "disable shared_memory in DataLoader")
                use_shared_memory = False

Q
qingqing01 已提交
211 212 213 214 215 216
        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
K
Kaipeng Deng 已提交
217
            use_shared_memory=use_shared_memory)
Q
qingqing01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        # pack {filed_name: field_data} here
        # looking forward to support dictionary
        # data structure in paddle.io.DataLoader
        try:
            data = next(self.loader)
            return {
                k: v
                for k, v in zip(self._batch_transforms.output_fields, data)
            }
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
249 250
    __shared__ = ['num_classes']

Q
qingqing01 已提交
251 252 253 254 255 256 257
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 drop_empty=True,
258
                 num_classes=80,
259
                 collate_batch=True,
Q
qingqing01 已提交
260
                 **kwargs):
261 262 263
        super(TrainReader, self).__init__(
            sample_transforms, batch_transforms, batch_size, shuffle, drop_last,
            drop_empty, num_classes, collate_batch, **kwargs)
Q
qingqing01 已提交
264 265 266 267


@register
class EvalReader(BaseDataLoader):
268 269
    __shared__ = ['num_classes']

Q
qingqing01 已提交
270 271 272 273 274 275 276
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
                 drop_empty=True,
277
                 num_classes=80,
Q
qingqing01 已提交
278
                 **kwargs):
K
Kaipeng Deng 已提交
279 280 281
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         drop_empty, num_classes, **kwargs)
Q
qingqing01 已提交
282 283 284 285


@register
class TestReader(BaseDataLoader):
286 287
    __shared__ = ['num_classes']

Q
qingqing01 已提交
288 289 290 291 292 293 294
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
295
                 num_classes=80,
Q
qingqing01 已提交
296
                 **kwargs):
K
Kaipeng Deng 已提交
297 298 299
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         drop_empty, num_classes, **kwargs)