lod_tensor_test.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include "paddle/framework/lod_tensor.h"

#include <glog/logging.h>
#include <gtest/gtest.h>
18
#include <algorithm>
19
#include <memory>
20
#include <vector>
21 22 23 24

namespace paddle {
namespace framework {

25 26
const int kLodTensorSize = 20 * 128;

27
class LoDTensorTester : public ::testing::Test {
28 29 30 31 32 33 34
 public:
  virtual void SetUp() override {
    // tensor's batch_size: 30
    // 3 levels
    // 0 10 20
    // 0 5 10 15 20
    // 0 2 5 7 10 12 15 20
35
    LoD lod;
36 37
    lod.push_back(std::vector<size_t>{0, 2, 3});
    lod.push_back(std::vector<size_t>{0, 2, 5, 8});
38
    lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
39

40 41
    ASSERT_EQ(lod.size(), 3UL);

42
    lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
43
    // malloc memory
44 45 46 47
    float* dst_ptr = lod_tensor_.mutable_data<float>(place);
    for (int i = 0; i < kLodTensorSize; ++i) {
      dst_ptr[i] = i;
    }
48

49
    lod_tensor_.set_lod(lod);
50 51 52 53
  }

 protected:
  platform::CPUPlace place;
54
  LoDTensor lod_tensor_;
55 56
};

57
TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); }
58

59
TEST_F(LoDTensorTester, NumElements) {
60
  ASSERT_EQ(lod_tensor_.NumElements(0), 2UL);
61
  ASSERT_EQ(lod_tensor_.NumElements(1), 3UL);
62
  ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
63 64
}

65 66
TEST_F(LoDTensorTester, NumElements2) {
  ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL);
67 68
  ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL);
  ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL);
69 70
}

71
TEST_F(LoDTensorTester, ShrinkLevels) {
72 73
  // slice 1 level
  for (size_t level = 0; level < 3UL; ++level) {
74
    LoDTensor new_lod_tensor = lod_tensor_;
75
    new_lod_tensor.ShrinkLevels(level, level + 1);
76
    ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
77
    ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
78
  }
79
  // shrink 2 level
80
  for (size_t level = 0; level < 2UL; ++level) {
81
    LoDTensor new_lod_tensor = lod_tensor_;
82
    new_lod_tensor.ShrinkLevels(level, level + 2);
83 84 85
    // the lowest level's last element should be the tensor's batch_size.
    ASSERT_EQ(new_lod_tensor.lod().back().back(),
              lod_tensor_.lod().back().back());
86
    ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
87
    ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
88 89 90
  }
}

91
TEST_F(LoDTensorTester, ShrinkInLevel) {
92
  size_t level = 0;
93
  LoDTensor new_lod_tensor = lod_tensor_;
94
  new_lod_tensor.ShrinkInLevel(level, 0, 1);
95 96 97 98 99 100 101 102
  ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
  ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL);
  ASSERT_EQ(new_lod_tensor.NumElements(1), 2UL);
  ASSERT_EQ(new_lod_tensor.NumElements(2), 5UL);
  ASSERT_EQ(new_lod_tensor.dims()[0], 12);
  for (int i = 0; i < 12 * 128; i++) {
    ASSERT_EQ(new_lod_tensor.data<float>()[i], i);
  }
103 104

  level = 1;
105
  new_lod_tensor = lod_tensor_;
106
  new_lod_tensor.ShrinkInLevel(level, 1, 2);
107
  ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
108 109
  ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL);
  ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  ASSERT_EQ(new_lod_tensor.dims()[0], 7);
  for (int i = 5 * 128; i < 12 * 128; i++) {
    ASSERT_EQ(new_lod_tensor.data<float>()[i - 5 * 128], i);
  }

  LoDTensor t1;
  t1.set_lod(lod_tensor_.lod());
  t1.ShareDataWith(lod_tensor_);

  LoDTensor t2;
  t2.set_lod(lod_tensor_.lod());
  t2.ShareDataWith(lod_tensor_);

  t1.ShrinkInLevel(0, 1, 2);
  t2.ShrinkInLevel(0, 0, 1);
  EXPECT_NE(t1.data<float>(), t2.data<float>());
  EXPECT_NE(t1.data<float>(), lod_tensor_.data<float>());
}

TEST(LodExpand, test) {
  LoD lod{{0, 2}};
  LoDTensor tensor;
  tensor.set_lod(lod);
  tensor.Resize({2, 1});
  tensor.mutable_data<float>(platform::CPUPlace());
  tensor.data<float>()[0] = 0;
  tensor.data<float>()[1] = 1;

  LoD target;
  target.emplace_back(std::vector<size_t>{0, 3, 5});
  auto new_tensor = LodExpand<float>(tensor, target, 0UL, platform::CPUPlace());
  std::vector<int> result{{0, 0, 0, 1, 1}};
  for (size_t i = 0; i < 5; i++) {
    ASSERT_EQ(new_tensor.data<float>()[i], result[i]);
  }
145 146
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
TEST_F(LoDTensorTester, SerializeDeserialize) {
  LoDTensor new_lod_tensor = lod_tensor_;
  float* src_ptr = lod_tensor_.data<float>();
  std::string s = lod_tensor_.SerializeToString();
  LoDTensor dst;
  dst.DeserializeFromString(s, platform::CPUPlace());
  float* dst_ptr = dst.data<float>();
  for (int i = 0; i < kLodTensorSize; ++i) {
    EXPECT_EQ(dst_ptr[i], src_ptr[i]);
  }

  ASSERT_EQ(dst.NumElements(0), 2UL);
  ASSERT_EQ(dst.NumElements(1), 3UL);
  ASSERT_EQ(dst.NumElements(2), 8UL);
}

163 164
}  // namespace framework
}  // namespace paddle