checkpoint.py 9.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import errno
import os
import time
import numpy as np
import paddle
W
wangxinxin08 已提交
25
import paddle.nn as nn
Q
qingqing01 已提交
26 27 28 29 30 31 32 33 34 35 36 37
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
38 39 40
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _get_unique_endpoints(trainer_endpoints):
    # Sorting is to avoid different environmental variables for each card
    trainer_endpoints.sort()
    ips = set()
    unique_endpoints = set()
    for endpoint in trainer_endpoints:
        ip = endpoint.split(":")[0]
        if ip in ips:
            continue
        ips.add(ip)
        unique_endpoints.add(endpoint)
    logger.info("unique_endpoints {}".format(unique_endpoints))
    return unique_endpoints


Q
qingqing01 已提交
58 59 60 61 62 63 64
def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


S
shangliang Xu 已提交
65
def load_weight(model, weight, optimizer=None, ema=None):
Q
qingqing01 已提交
66
    if is_url(weight):
K
Kaipeng Deng 已提交
67
        weight = get_weights_path(weight)
Q
qingqing01 已提交
68 69 70 71 72 73 74

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

S
shangliang Xu 已提交
75 76 77 78 79 80 81 82
    if ema is not None and os.path.exists(path + '.pdema'):
        # Exchange model and ema_model to load
        ema_state_dict = paddle.load(pdparam_path)
        param_state_dict = paddle.load(path + '.pdema')
    else:
        ema_state_dict = None
        param_state_dict = paddle.load(pdparam_path)

83 84 85 86 87 88 89 90 91 92 93 94 95 96
    model_dict = model.state_dict()
    model_weight = {}
    incorrect_keys = 0

    for key in model_dict.keys():
        if key in param_state_dict.keys():
            model_weight[key] = param_state_dict[key]
        else:
            logger.info('Unmatched key: {}'.format(key))
            incorrect_keys += 1

    assert incorrect_keys == 0, "Load weight {} incorrectly, \
            {} keys unmatched, please check again.".format(weight,
                                                           incorrect_keys)
K
Kaipeng Deng 已提交
97
    logger.info('Finish resuming model weights: {}'.format(pdparam_path))
98 99

    model.set_dict(model_weight)
Q
qingqing01 已提交
100

G
Guanghua Yu 已提交
101
    last_epoch = 0
Q
qingqing01 已提交
102 103
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
104
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
105 106 107 108 109 110
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
111

S
shangliang Xu 已提交
112
        if ema_state_dict is not None:
S
shangliang Xu 已提交
113 114
            ema.resume(ema_state_dict,
                       optim_state_dict['LR_Scheduler']['last_epoch'])
S
shangliang Xu 已提交
115 116
    elif ema_state_dict is not None:
        ema.resume(ema_state_dict)
G
Guanghua Yu 已提交
117
    return last_epoch
Q
qingqing01 已提交
118 119


W
wangguanzhong 已提交
120 121 122 123 124 125 126
def match_state_dict(model_state_dict, weight_state_dict):
    """
    Match between the model state dict and pretrained weight state dict.
    Return the matched state dict.

    The method supposes that all the names in pretrained weight state dict are
    subclass of the names in models`, if the prefix 'backbone.' in pretrained weight
S
shangliang Xu 已提交
127
    keys is stripped. And we could get the candidates for each model key. Then we
W
wangguanzhong 已提交
128
    select the name with the longest matched size as the final match result. For
S
shangliang Xu 已提交
129
    example, the model state dict has the name of
W
wangguanzhong 已提交
130 131 132 133 134 135 136 137 138
    'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as
    name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We
    match the 'res2.res2a.branch2a.conv.weight' to the model key.
    """

    model_keys = sorted(model_state_dict.keys())
    weight_keys = sorted(weight_state_dict.keys())

    def match(a, b):
139
        if b.startswith('backbone.res5'):
S
shangliang Xu 已提交
140
            # In Faster RCNN, res5 pretrained weights have prefix of backbone,
W
wangguanzhong 已提交
141 142
            # however, the corresponding model weights have difficult prefix,
            # bbox_head.
W
wangguanzhong 已提交
143
            b = b[9:]
W
wangguanzhong 已提交
144 145 146 147 148 149 150 151 152 153
        return a == b or a.endswith("." + b)

    match_matrix = np.zeros([len(model_keys), len(weight_keys)])
    for i, m_k in enumerate(model_keys):
        for j, w_k in enumerate(weight_keys):
            if match(m_k, w_k):
                match_matrix[i, j] = len(w_k)
    max_id = match_matrix.argmax(1)
    max_len = match_matrix.max(1)
    max_id[max_len == 0] = -1
154 155 156

    load_id = set(max_id)
    load_id.discard(-1)
G
Guanghua Yu 已提交
157
    not_load_weight_name = []
158 159 160 161
    for idx in range(len(weight_keys)):
        if idx not in load_id:
            not_load_weight_name.append(weight_keys[idx])

G
Guanghua Yu 已提交
162 163 164
    if len(not_load_weight_name) > 0:
        logger.info('{} in pretrained weight is not used in the model, '
                    'and its will not be loaded'.format(not_load_weight_name))
W
wangguanzhong 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    matched_keys = {}
    result_state_dict = {}
    for model_id, weight_id in enumerate(max_id):
        if weight_id == -1:
            continue
        model_key = model_keys[model_id]
        weight_key = weight_keys[weight_id]
        weight_value = weight_state_dict[weight_key]
        model_value_shape = list(model_state_dict[model_key].shape)

        if list(weight_value.shape) != model_value_shape:
            logger.info(
                'The shape {} in pretrained weight {} is unmatched with '
                'the shape {} in model {}. And the weight {} will not be '
                'loaded'.format(weight_value.shape, weight_key,
                                model_value_shape, model_key, weight_key))
            continue

        assert model_key not in result_state_dict
        result_state_dict[model_key] = weight_value
        if weight_key in matched_keys:
            raise ValueError('Ambiguity weight {} loaded, it matches at least '
                             '{} and {} in the model'.format(
                                 weight_key, model_key, matched_keys[
                                     weight_key]))
        matched_keys[weight_key] = model_key
    return result_state_dict


K
Kaipeng Deng 已提交
194
def load_pretrain_weight(model, pretrain_weight):
Q
qingqing01 已提交
195
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
196
        pretrain_weight = get_weights_path(pretrain_weight)
Q
qingqing01 已提交
197 198 199 200

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
201 202 203 204
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))
Q
qingqing01 已提交
205 206 207

    model_dict = model.state_dict()

K
Kaipeng Deng 已提交
208 209
    weights_path = path + '.pdparams'
    param_state_dict = paddle.load(weights_path)
W
wangguanzhong 已提交
210
    param_state_dict = match_state_dict(model_dict, param_state_dict)
K
Kaipeng Deng 已提交
211 212 213

    model.set_dict(param_state_dict)
    logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
214 215


S
shangliang Xu 已提交
216 217 218 219 220 221
def save_model(model,
               optimizer,
               save_dir,
               save_name,
               last_epoch,
               ema_model=None):
Q
qingqing01 已提交
222 223
    """
    save model into disk.
224

Q
qingqing01 已提交
225
    Args:
S
shangliang Xu 已提交
226
        model (dict): the model state_dict to save parameters.
Q
qingqing01 已提交
227 228 229 230 231
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
S
shangliang Xu 已提交
232
        ema_model (dict|None): the ema_model state_dict to save parameters.
Q
qingqing01 已提交
233
    """
234 235
    if paddle.distributed.get_rank() != 0:
        return
S
shangliang Xu 已提交
236 237
    assert isinstance(model, dict), ("model is not a instance of dict, "
                                     "please call model.state_dict() to get.")
Q
qingqing01 已提交
238 239 240
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
S
shangliang Xu 已提交
241 242
    # save model
    if ema_model is None:
W
wangxinxin08 已提交
243
        paddle.save(model, save_path + ".pdparams")
S
shangliang Xu 已提交
244 245 246 247 248 249 250 251 252 253 254 255
    else:
        assert isinstance(ema_model,
                          dict), ("ema_model is not a instance of dict, "
                                  "please call model.state_dict() to get.")
        # Exchange model and ema_model to save
        paddle.save(ema_model, save_path + ".pdparams")
        paddle.save(model, save_path + ".pdema")
    # save optimizer
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    paddle.save(state_dict, save_path + ".pdopt")
    logger.info("Save checkpoint: {}".format(save_dir))