cross_entropy_op.cc 6.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20 21
using framework::LoDTensor;

22
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
D
dongzhihong 已提交
27
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
29
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"), "Output(Y) must not be null.");

    auto x = ctx.Input<Tensor>("X");
    auto label = ctx.Input<Tensor>("Label");
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
48
    } else {
49 50 51
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
52
    }
53

54
    ctx.Output<LoDTensor>("Y")->Resize({x->dims()[0], 1});
Q
Qiao Longfei 已提交
55 56 57
  }
};

58
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
59 60 61
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
62
 protected:
D
dongzhihong 已提交
63
  void InferShape(const framework::InferShapeContext &ctx) const override {
64 65 66 67 68
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
                            "Input(Y@GRAD) must not be null.");
69

70
    auto x = ctx.Input<Tensor>("X");
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    auto label = ctx.Input<Tensor>("Label");
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0],
                      "The 1st dimension of Input(X) and Input(Y@Grad) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
                      "The 2nd dimension of Input(Y@Grad) must be 1.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
    } else {
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
    }
Y
Yan Chunwei 已提交
97

98
    auto dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
99
    dx->Resize(x->dims());
Y
Yan Chunwei 已提交
100 101 102
  }
};

103
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
104
 public:
105 106
  CrossEntropyOpMaker(framework::OpProto *proto,
                      framework::OpAttrChecker *op_checker)
107
      : OpProtoAndCheckerMaker(proto, op_checker) {
108 109 110
    AddInput("X", "The first input of CrossEntropyOp");
    AddInput("Label", "The second input of CrossEntropyOp");
    AddOutput("Y", "The output of CrossEntropyOp");
111 112
    AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);

Q
Qiao Longfei 已提交
113
    AddComment(R"DOC(
114
CrossEntropy Operator.
Q
Qiao Longfei 已提交
115

116 117 118 119
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
    soft_label = 0, Label[i, 0] indicates the class index for sample i:
120

121
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
122

123 124 125
2) Soft-label cross-entropy:
    soft_label = 1, Label[i, j] indicates the soft label of class j
    for sample i:
126

127
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
128

129
   Please make sure that in this case the summuation of each row of Label
130 131 132 133 134 135
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
Q
Qiao Longfei 已提交
136 137 138 139 140 141
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
142
namespace ops = paddle::operators;
143 144 145 146 147
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);