test_imperative_mnist.py 3.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
21
from paddle.fluid.optimizer import SGDOptimizer
22 23
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
24 25 26 27 28 29


class SimpleImgConvPool(fluid.imperative.PyLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
30
                 num_filters,
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
65

66 67 68 69
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
70 71 72


class MNIST(fluid.imperative.PyLayer):
73 74
    def __init__(self, param_attr=None, bias_attr=None):
        super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr)
M
minqiyang 已提交
75

76
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
77
            1, 5, 20, 2, 2, act="relu")
78 79

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
80 81 82 83 84 85 86 87 88 89
            20, 5, 50, 2, 2, act="relu")

        pool_2_shape = 50 * 8 * 8
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(-1,
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)))
M
minqiyang 已提交
90 91

    def forward(self, inputs):
92 93
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
94
        x = self._fc(x)
M
minqiyang 已提交
95 96 97 98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_cpu_float32(self):
        with fluid.imperative.guard():
            mnist = MNIST()
M
minqiyang 已提交
102
            sgd = SGDOptimizer(learning_rate=1e-3)
103 104 105 106 107 108 109 110 111 112 113 114 115 116

            for i in range(1):
                x_data = np.random.rand(128, 1, 28, 28).astype('float32')
                img = to_variable(x_data)
                y_data = np.random.rand(128, 1).astype('int64')
                label = to_variable(y_data)
                label._stop_gradient = True

                predict = mnist(img)
                out = fluid.layers.cross_entropy(predict, label)
                out._backward()
                filter_grad = mnist._simple_img_conv_pool_1._conv2d._filter_param._gradient(
                )
                sgd.minimize(out)
M
minqiyang 已提交
117 118 119 120


if __name__ == '__main__':
    unittest.main()