test_imperative_mnist.py 4.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
from paddle.fluid.imperative.nn import Conv2D, Pool2D


class SimpleImgConvPool(fluid.imperative.PyLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        #  groups = 1
        #  dilation = [1, 1]
        #  pad = [0, 0]
        #  stride = [1, 1]
        #  input_size = [2, 3, 5, 5]  # NCHW
        #  assert np.mod(input_size[1], groups) == 0
        #  f_c = input_size[1] // groups
        #  filter_size = [6, f_c, 3, 3]
M
minqiyang 已提交
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
72

73 74 75 76
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
77 78 79


class MNIST(fluid.imperative.PyLayer):
80 81
    def __init__(self, param_attr=None, bias_attr=None):
        super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr)
M
minqiyang 已提交
82

83
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
84
            num_channels=3,
85
            filter_size=5,
M
minqiyang 已提交
86
            num_filters=20,
87 88 89 90 91 92 93 94 95 96 97
            pool_size=2,
            pool_stride=2,
            act="relu")

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            num_channels=3,
            filter_size=5,
            num_filters=50,
            pool_size=2,
            pool_stride=2,
            act="relu")
M
minqiyang 已提交
98 99

    def forward(self, inputs):
100 101
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
M
minqiyang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        return x


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_cpu_float32(self):
        with fluid.imperative.guard():
            mnist = MNIST()

            data = np.random.rand(2, 3, 5, 5).astype('float32')
            mnist(data)
        #  np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        #  with fluid.imperative.guard():
        #  mlp = MLP()
        #  out = mlp(np_inp)
        #  dy_out = out._numpy()
        #  out._backward()
        #  dy_grad = mlp._fc1._w._gradient()

        #  with new_program_scope():
        #  inp = fluid.layers.data(
        #  name="inp", shape=[2, 2], append_batch_size=False)
        #  mlp = MLP()
        #  out = mlp(inp)
        #  param_grads = fluid.backward.append_backward(
        #  out, parameter_list=[mlp._fc1._w.name])[0]
        #  exe = fluid.Executor(fluid.CPUPlace())
        #  exe.run(fluid.default_startup_program())

        #  static_out, static_grad = exe.run(
        #  feed={inp.name: np_inp},
        #  fetch_list=[out.name, param_grads[1].name])

        #  self.assertTrue(np.allclose(dy_out, static_out))
        #  self.assertTrue(np.allclose(dy_grad, static_grad))


if __name__ == '__main__':
    unittest.main()