yolov3_darknet.yml 3.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2
architecture: YOLOv3
use_gpu: true
G
Guanghua Yu 已提交
3
max_iters: 11000
G
Guanghua Yu 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
log_smooth_window: 20
save_dir: output
snapshot_iter: 1000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar
weights: output/yolov3_darknet/model_final
num_classes: 6
use_fine_grained_loss: false

YOLOv3:
  backbone: DarkNet
  yolo_head: YOLOv3Head

DarkNet:
  norm_type: sync_bn
  norm_decay: 0.
  depth: 53

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
G
Guanghua Yu 已提交
24 25 26
  anchors: [[12, 22], [19, 20], [30, 20],
            [22, 28], [16, 41], [45, 22],
            [26, 43], [36, 34], [53, 53]]
G
Guanghua Yu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  norm_decay: 0.
  yolo_loss: YOLOv3Loss
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

YOLOv3Loss:
  ignore_thresh: 0.7
  label_smooth: true

LearningRate:
  base_lr: 0.00025
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
G
Guanghua Yu 已提交
47 48
    - 7122
    - 9800
G
Guanghua Yu 已提交
49 50 51 52 53 54 55 56 57 58 59 60
  - !LinearWarmup
    start_factor: 0.
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

G
Guanghua Yu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
TrainReader:
  inputs_def:
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 50
  dataset:
    !COCODataSet
      image_dir: images
      anno_path: Annotations/train.json
      dataset_dir: /home/aistudio/work/PCB_DATASET/
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !NormalizeBox {}
    - !PadBox
      num_max_boxes: 50
    - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [640, 704, 768, 832, 896, 960]
    random_inter: True
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: True
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
  # this operator will be deleted automatically if use_fine_grained_loss
  # is set as false
  - !Gt2YoloTarget
    anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    anchors: [[12, 22], [19, 20], [30, 20],
            [22, 28], [16, 41], [45, 22],
            [26, 43], [36, 34], [53, 53]]
    downsample_ratios: [32, 16, 8]
  batch_size: 4
  shuffle: true
  drop_last: true
  worker_num: 8
  bufsize: 4
  use_process: true

EvalReader:
  inputs_def:
    fields: ['image', 'im_size', 'im_id']
    num_max_boxes: 50
  dataset:
    !COCODataSet
      image_dir: images
      anno_path: Annotations/val.json
      dataset_dir: /home/aistudio/work/PCB_DATASET/
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 896
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !PadBox
      num_max_boxes: 50
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 2
  drop_empty: false
  worker_num: 8
  bufsize: 4

TestReader:
  inputs_def:
    image_shape: [3, 896, 896]
    fields: ['image', 'im_size', 'im_id']
  dataset:
    !ImageFolder
      anno_path: /home/aistudio/work/PCB_DATASET/Annotations/val.json
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 896
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 1