architecture: YOLOv3 use_gpu: true max_iters: 11000 log_smooth_window: 20 save_dir: output snapshot_iter: 1000 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar weights: output/yolov3_darknet/model_final num_classes: 6 use_fine_grained_loss: false YOLOv3: backbone: DarkNet yolo_head: YOLOv3Head DarkNet: norm_type: sync_bn norm_decay: 0. depth: 53 YOLOv3Head: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[12, 22], [19, 20], [30, 20], [22, 28], [16, 41], [45, 22], [26, 43], [36, 34], [53, 53]] norm_decay: 0. yolo_loss: YOLOv3Loss nms: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 normalized: false score_threshold: 0.01 YOLOv3Loss: ignore_thresh: 0.7 label_smooth: true LearningRate: base_lr: 0.00025 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 7122 - 9800 - !LinearWarmup start_factor: 0. steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score'] num_max_boxes: 50 dataset: !COCODataSet image_dir: images anno_path: Annotations/train.json dataset_dir: /home/aistudio/work/PCB_DATASET/ with_background: false sample_transforms: - !DecodeImage to_rgb: True - !NormalizeBox {} - !PadBox num_max_boxes: 50 - !BboxXYXY2XYWH {} batch_transforms: - !RandomShape sizes: [640, 704, 768, 832, 896, 960] random_inter: True - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True # Gt2YoloTarget is only used when use_fine_grained_loss set as true, # this operator will be deleted automatically if use_fine_grained_loss # is set as false - !Gt2YoloTarget anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[12, 22], [19, 20], [30, 20], [22, 28], [16, 41], [45, 22], [26, 43], [36, 34], [53, 53]] downsample_ratios: [32, 16, 8] batch_size: 4 shuffle: true drop_last: true worker_num: 8 bufsize: 4 use_process: true EvalReader: inputs_def: fields: ['image', 'im_size', 'im_id'] num_max_boxes: 50 dataset: !COCODataSet image_dir: images anno_path: Annotations/val.json dataset_dir: /home/aistudio/work/PCB_DATASET/ with_background: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 896 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !PadBox num_max_boxes: 50 - !Permute to_bgr: false channel_first: True batch_size: 2 drop_empty: false worker_num: 8 bufsize: 4 TestReader: inputs_def: image_shape: [3, 896, 896] fields: ['image', 'im_size', 'im_id'] dataset: !ImageFolder anno_path: /home/aistudio/work/PCB_DATASET/Annotations/val.json with_background: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 896 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True batch_size: 1