mot_jde_infer.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
24
from preprocess import decode_image
W
wangguanzhong 已提交
25
from mot_utils import argsparser, Timer, get_current_memory_mb
26 27 28 29 30 31
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
32

33
from mot import JDETracker
34
from mot.utils import MOTTimer, write_mot_results, flow_statistic
W
wangguanzhong 已提交
35
from mot.visualize import plot_tracking, plot_tracking_dict
36 37

# Global dictionary
38
MOT_JDE_SUPPORT_MODELS = {
39 40 41 42 43 44 45 46 47 48
    'JDE',
    'FairMOT',
}


class JDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
50
        batch_size (int): size of pre batch in inference
51 52 53 54 55 56
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
57 58 59 60 61 62 63 64 65 66
        enable_mkldnn (bool): whether to open MKLDNN
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
67 68
    """

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def __init__(
            self,
            model_dir,
            tracker_config=None,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1088,
            trt_opt_shape=608,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
            output_dir='output',
            threshold=0.5,
            save_images=False,
            save_mot_txts=False,
            draw_center_traj=False,
            secs_interval=10,
            do_entrance_counting=False, ):
89 90 91 92 93 94 95 96 97 98
        super(JDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
99 100 101
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
102 103 104 105 106 107
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

108 109 110 111 112 113 114 115 116 117 118 119
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
        cfg = self.pred_config.tracker
        min_box_area = cfg.get('min_box_area', 200)
        vertical_ratio = cfg.get('vertical_ratio', 1.6)
        conf_thres = cfg.get('conf_thres', 0.0)
        tracked_thresh = cfg.get('tracked_thresh', 0.7)
        metric_type = cfg.get('metric_type', 'euclidean')
120 121 122 123 124 125 126 127 128

        self.tracker = JDETracker(
            num_classes=self.num_classes,
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)

129 130 131 132 133 134 135 136 137 138
    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes = result['pred_dets']
        if np_boxes.shape[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def tracking(self, det_results):
139
        pred_dets = det_results['pred_dets']  # cls_id, score, x0, y0, x1, y1
140
        pred_embs = det_results['pred_embs']
141 142 143 144 145 146 147 148 149 150 151
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
152
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
153 154 155 156 157 158 159 160
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
        return online_tlwhs, online_scores, online_ids

161
    def predict(self, repeats=1):
162 163
        '''
        Args:
164
            repeats (int): repeats number for prediction
165
        Returns:
166 167 168 169
            result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[x_min, y_min, x_max, y_max, score, class]
                            FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
                            shape: [N, 128]
170
        '''
W
wangguanzhong 已提交
171
        # model prediction
172
        np_pred_dets, np_pred_embs = None, None
173 174 175 176
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
177
            np_pred_dets = boxes_tensor.copy_to_cpu()
178
            embs_tensor = self.predictor.get_output_handle(output_names[1])
179 180 181 182 183 184 185 186 187
            np_pred_embs = embs_tensor.copy_to_cpu()

        result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
188 189
                      visual=True,
                      seq_name=None):
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
250
                if len(image_list) > 1 and frame_id % 10 == 0:
251 252 253 254 255 256 257 258 259 260 261
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=ids2names)
262 263
                if seq_name is None:
                    seq_name = image_list[0].split('/')[-2]
264 265 266 267 268 269 270 271 272 273 274 275 276
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'mot_output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
277
        else:
278 279 280 281 282 283 284 285 286 287 288 289
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
290 291
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
292 293 294 295 296 297 298 299
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
            entrance = [0, height / 2., width, height / 2.]

        video_fps = fps

317 318 319 320 321 322 323 324 325
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
326 327 328
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
329 330 331 332 333 334 335 336
            timer.toc()

            online_tlwhs, online_scores, online_ids = mot_results[0]
            for cls_id in range(num_classes):
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))

337 338 339 340 341 342 343 344 345 346
            # NOTE: just implement flow statistic for single class
            if num_classes == 1:
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records, data_type, num_classes)
                records = statistic['records']

347 348
            fps = 1. / timer.duration
            im = plot_tracking_dict(
349 350 351 352 353 354
                frame,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
355
                fps=fps,
356 357 358 359 360
                ids2names=ids2names,
                do_entrance_counting=self.do_entrance_counting,
                entrance=entrance,
                records=records,
                center_traj=center_traj)
361

362 363 364 365 366
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')

            write_mot_results(result_filename, results, data_type, num_classes)

            if num_classes == 1:
                result_filename = os.path.join(
                    self.output_dir,
                    video_out_name.split('.')[-2] + '_flow_statistic.txt')
                f = open(result_filename, 'w')
                for line in records:
                    f.write(line)
                print('Flow statistic save in {}'.format(result_filename))
                f.close()

384 385 386 387 388 389
        writer.release()


def main():
    detector = JDE_Detector(
        FLAGS.model_dir,
390
        tracker_config=None,
391 392
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
393
        batch_size=1,
394 395 396 397 398
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
399 400 401 402 403 404 405 406
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
        do_entrance_counting=FLAGS.do_entrance_counting, )
407 408 409

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
410
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
411 412 413
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
414 415
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)

416 417 418 419
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
420
            model_dir = FLAGS.model_dir
421 422 423 424
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
425
            bench_log(detector, img_list, model_info, name='MOT')
426 427 428 429 430 431 432 433 434 435 436 437


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()