mot_jde_infer.py 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
24 25 26 27 28 29 30 31
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
32

33 34 35
from mot import JDETracker
from utils import MOTTimer, write_mot_results
from visualize import plot_tracking, plot_tracking_dict
36 37

# Global dictionary
38
MOT_JDE_SUPPORT_MODELS = {
39 40 41 42 43 44 45 46 47 48
    'JDE',
    'FairMOT',
}


class JDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
50
        batch_size (int): size of pre batch in inference
51 52 53 54 55 56
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
57
        enable_mkldnn (bool): whether to open MKLDNN 
58 59 60 61
    """

    def __init__(self,
                 model_dir,
62
                 tracker_config=None,
63
                 device='CPU',
64
                 run_mode='paddle',
65 66 67 68 69 70
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
71 72 73
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5):
74 75 76 77 78 79 80 81 82 83
        super(JDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
        cfg = self.pred_config.tracker
        min_box_area = cfg.get('min_box_area', 200)
        vertical_ratio = cfg.get('vertical_ratio', 1.6)
        conf_thres = cfg.get('conf_thres', 0.0)
        tracked_thresh = cfg.get('tracked_thresh', 0.7)
        metric_type = cfg.get('metric_type', 'euclidean')
99 100 101 102 103 104 105 106 107

        self.tracker = JDETracker(
            num_classes=self.num_classes,
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)

108 109 110 111 112 113 114 115 116 117 118 119
    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes = result['pred_dets']
        if np_boxes.shape[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def tracking(self, det_results):
        pred_dets = det_results['pred_dets']
        pred_embs = det_results['pred_embs']
120 121 122 123 124 125 126 127 128 129 130
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
131
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
132 133 134 135 136 137 138 139
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
        return online_tlwhs, online_scores, online_ids

140
    def predict(self, repeats=1):
141 142
        '''
        Args:
143
            repeats (int): repeats number for prediction
144
        Returns:
145 146 147 148
            result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[x_min, y_min, x_max, y_max, score, class]
                            FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
                            shape: [N, 128]
149
        '''
W
wangguanzhong 已提交
150
        # model prediction
151
        np_pred_dets, np_pred_embs = None, None
152 153 154 155
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
156
            np_pred_dets = boxes_tensor.copy_to_cpu()
157
            embs_tensor = self.predictor.get_output_handle(output_names[1])
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            np_pred_embs = embs_tensor.copy_to_cpu()

        result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
                if frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=ids2names)
                seq_name = image_list[0].split('/')[-2]
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'mot_output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
254
        else:
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
            mot_results = self.predict_image([frame], visual=False)
            timer.toc()

            online_tlwhs, online_scores, online_ids = mot_results[0]
            for cls_id in range(num_classes):
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))

            fps = 1. / timer.duration
            im = plot_tracking_dict(
296 297 298 299 300 301
                frame,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
302
                fps=fps,
303
                ids2names=ids2names)
304

305 306 307 308 309
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        writer.release()


def main():
    detector = JDE_Detector(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
327
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
328 329 330
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
331 332
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)

333 334 335 336
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
337
            model_dir = FLAGS.model_dir
338 339 340 341
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
342
            bench_log(detector, img_list, model_info, name='MOT')
343 344 345 346 347 348 349 350 351 352 353 354


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()