io.py 44.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
T
tangwei12 已提交
20 21
import time
import shutil
22
import six
23
from functools import reduce
24

25
from paddle.fluid import layers
X
Xin Pan 已提交
26
from paddle.fluid.executor import Executor
27
from paddle.fluid.evaluator import Evaluator
28
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
K
fix bug  
Kexin Zhao 已提交
29
from . import core
30 31

__all__ = [
T
tangwei12 已提交
32
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
33
    'load_persistables', 'save_inference_model', 'load_inference_model'
34 35 36 37
]


def is_parameter(var):
F
fengjiayi 已提交
38 39
    """
    Check whether the given variable is an instance of Parameter.
40 41

    Args:
F
fengjiayi 已提交
42
        var(Variable): The variable to be checked.
43 44

    Returns:
F
fengjiayi 已提交
45 46 47 48 49 50 51 52
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
53
    """
54 55 56 57
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

71
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
72 73
            res = fluid.io.is_persistable(param)
    """
74
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
75 76
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
77
        return False
78 79 80 81 82 83 84 85
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
86
        dtype=var.dtype,
87 88 89 90 91
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


92 93 94 95 96
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
97
              filename=None):
98
    """
F
fengjiayi 已提交
99 100
    Save variables to the given directory by executor.

101 102 103 104
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
105
    are assigned, the `main_program` and the `predicate` will be ignored.
106

107 108 109
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
110
    use `filename` to specify it.
111

F
fengjiayi 已提交
112 113 114
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
115 116
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
117 118
                                    be used automatically.
                                    Default: None
119
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
120 121
                                   It has a higher priority than the `main_program`.
                                   Default: None
122 123 124 125
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
126 127
                                  `vars` is None).
                                  Default: None
128
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
151
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
152 153 154 155 156 157
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
158
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
159 160 161
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
162 163
    """
    if vars is None:
164
        if main_program is None:
Y
Yu Yang 已提交
165
            main_program = default_main_program()
166
        if not isinstance(main_program, Program):
167 168 169 170
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
171
            main_program=main_program,
172
            dirname=dirname,
173
            vars=list(filter(predicate, main_program.list_vars())),
174
            filename=filename)
175 176 177
    else:
        save_program = Program()
        save_block = save_program.global_block()
178

179 180 181 182 183
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

184
        save_var_map = {}
185
        for each_var in vars:
186 187 188
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
189
            new_var = _clone_var_in_block_(save_block, each_var)
190
            if filename is None:
191 192 193 194 195 196 197 198
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

199
        if filename is not None:
200 201 202 203
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

204
            save_block.append_op(
205 206
                type='save_combine',
                inputs={'X': save_var_list},
207
                outputs={},
208
                attrs={'file_path': os.path.join(dirname, filename)})
209

210 211 212
        executor.run(save_program)


213
def save_params(executor, dirname, main_program=None, filename=None):
214
    """
F
fengjiayi 已提交
215 216 217
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

218 219 220
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
221 222
    the file name.

223 224 225
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
226 227 228 229 230 231 232 233 234
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
235 236
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
237 238 239 240 241 242 243 244 245 246 247 248
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
249
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
250
                                 main_program=None)
251 252 253 254
    """
    save_vars(
        executor,
        dirname=dirname,
255
        main_program=main_program,
256
        vars=None,
257
        predicate=is_parameter,
258
        filename=filename)
259 260


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


441
def save_persistables(executor, dirname, main_program=None, filename=None):
442
    """
443 444
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
445 446
    or file `filename`.

447 448 449
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
450 451 452 453 454
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
455 456
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
457 458
                                    program will be used automatically.
                                    Default: None
459
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
460 461 462 463 464 465 466 467 468 469 470 471
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
472
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
473
                                       main_program=None)
474
    """
475 476 477 478 479 480 481 482 483 484 485 486 487

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
488 489


490 491 492 493 494
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
495
              filename=None):
496
    """
F
fengjiayi 已提交
497 498
    Load variables from the given directory by executor.

499 500 501 502
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
503 504
    are assigned, the `main_program` and the `predicate` will be ignored.

505 506 507
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
508
    use `filename` to specify it.
509

F
fengjiayi 已提交
510 511 512
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
513 514
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
515 516
                                    be used automatically.
                                    Default: None
517
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
518 519
                                   It has a higher priority than the `main_program`.
                                   Default: None
520 521 522 523
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
524 525
                                  `vars` is None).
                                  Default: None
526
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
546

F
fengjiayi 已提交
547 548
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
549
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
550 551 552 553 554 555
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
556
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
557
                               filename="vars_file")
558
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
559
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
560 561
    """
    if vars is None:
562
        if main_program is None:
Y
Yu Yang 已提交
563
            main_program = default_main_program()
564
        if not isinstance(main_program, Program):
565 566 567 568 569
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
570
            main_program=main_program,
571
            vars=list(filter(predicate, main_program.list_vars())),
572
            filename=filename)
573 574 575
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
576

577 578 579 580 581
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

582
        load_var_map = {}
583 584
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
585 586
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
587
            new_var = _clone_var_in_block_(load_block, each_var)
588
            if filename is None:
589 590 591 592 593 594 595 596
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

597
        if filename is not None:
598 599 600 601
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

602
            load_block.append_op(
603
                type='load_combine',
604
                inputs={},
605
                outputs={"Out": load_var_list},
606
                attrs={'file_path': os.path.join(dirname, filename)})
607 608 609
        executor.run(load_prog)


610
def load_params(executor, dirname, main_program=None, filename=None):
611
    """
F
fengjiayi 已提交
612
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
613
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
614 615
    the file `filename`.

616 617 618
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
619 620
    `filename` to specify the file name.

621 622 623 624
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
625 626 627 628 629 630 631 632

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
633
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
634 635 636 637 638 639 640 641 642 643 644 645
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
646
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
647
                                main_program=None)
648 649
    """
    load_vars(
650 651 652
        executor,
        dirname=dirname,
        main_program=main_program,
653
        predicate=is_parameter,
654
        filename=filename)
655 656


657
def load_persistables(executor, dirname, main_program=None, filename=None):
658
    """
659 660
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
661 662
    `dirname` or the file `filename`.

663 664 665
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
666 667 668 669 670
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
671 672
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
673 674
                                    program will be used automatically.
                                    Default: None
675
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
676 677 678 679 680 681 682 683 684 685 686 687
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
688
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
689
                                       main_program=None)
690
    """
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

769 770 771 772
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
822 823


824 825 826
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
827 828 829
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
830 831
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
832 833 834
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
835

836
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
837
        out = global_block.var(name)
W
Wu Yi 已提交
838
        global_block._prepend_op(
K
Kexin Zhao 已提交
839 840
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
841
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
842 843 844
            attrs={'col': i})


845 846 847
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
848 849
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
850 851 852
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
853

854
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
855 856 857 858 859 860 861
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


862 863 864 865
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
866
                         main_program=None,
867
                         model_filename=None,
868 869
                         params_filename=None,
                         export_for_deployment=True):
870
    """
F
fengjiayi 已提交
871 872 873 874 875
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
876
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
877
                                     during inference.
878
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
879 880
                                     results.
        executor(Executor): The executor that saves the inference model.
881 882
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
883 884
                                    the default main program will be used.
                                    Default: None.
885 886
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
887
                                  `__model__` will be used.
888 889
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
890
                                   in separate files .
X
Xin Pan 已提交
891 892 893 894 895
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
896

F
fengjiayi 已提交
897 898 899 900 901 902 903 904 905
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
906

F
fengjiayi 已提交
907 908 909 910 911
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

912 913 914
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
915
            # and parameters are going to be saved in separate files under folder
916
            # "./infer_model".
917 918

    """
M
minqiyang 已提交
919
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
920
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
921
    elif export_for_deployment:
Q
Qiao Longfei 已提交
922
        if len(feeded_var_names) > 0:
923
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
924
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
925
                    isinstance(name, six.string_types)
926
                    for name in feeded_var_names)):
M
minqiyang 已提交
927
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
928 929

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
930
        target_vars = [target_vars]
X
Xin Pan 已提交
931
    elif export_for_deployment:
932 933
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
934 935
            raise ValueError("'target_vars' should be a list of Variable.")

936
    if main_program is None:
Y
Yu Yang 已提交
937
        main_program = default_main_program()
D
dzhwinter 已提交
938
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
939 940 941 942 943 944
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
945

946 947 948 949 950
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
951
        for i, var in enumerate(target_vars):
952
            if isinstance(var, Variable):
F
flame 已提交
953 954 955
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
956 957
        target_vars = uniq_target_vars

958 959
    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
960
        os.makedirs(dirname)
961 962 963 964
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
965 966 967 968 969
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)
970

X
Xin Pan 已提交
971 972 973 974
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
975 976 977

    origin_program = main_program.clone()

X
Xin Pan 已提交
978
    if export_for_deployment:
X
Xin Pan 已提交
979 980
        main_program = main_program.clone()
        global_block = main_program.global_block()
981
        need_to_remove_op_index = []
X
Xin Pan 已提交
982 983 984
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
985 986 987 988 989
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
990
        main_program.desc.flush()
X
Xin Pan 已提交
991

X
Xin Pan 已提交
992 993
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
994 995
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
996 997 998 999 1000
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1001 1002 1003
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1004 1005
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1006

1007 1008
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1009 1010
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1011

X
fix  
Xin Pan 已提交
1012 1013
    save_persistables(executor, dirname, main_program, params_filename)

1014

1015 1016 1017
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1018 1019
                         params_filename=None,
                         pserver_endpoints=None):
1020 1021 1022
    """
    Load inference model from a directory

F
fengjiayi 已提交
1023 1024 1025 1026
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1027
                                  If it is None, the default filename
F
fengjiayi 已提交
1028 1029 1030
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1031 1032 1033
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1034
                                   files, set it as 'None'.
1035 1036 1037 1038
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1039 1040 1041

    Returns:
        tuple: The return of this function is a tuple with three elements:
1042 1043 1044 1045 1046
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1057
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1058
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1059 1060 1061 1062 1063
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1064 1065 1066
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1067 1068 1069 1070 1071
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1072
            # program to get the inference result.
1073

1074 1075 1076 1077
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

1078 1079
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1080
    else:
1081 1082 1083 1084 1085
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1086

1087
    with open(model_filename, "rb") as f:
1088 1089
        program_desc_str = f.read()

1090
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1091
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1092 1093 1094
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
1095
    load_persistables(executor, dirname, program, params_filename)
1096

T
tangwei12 已提交
1097
    if pserver_endpoints:
T
tangwei12 已提交
1098
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1099

1100 1101
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1102 1103 1104 1105 1106
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1107 1108


T
tangwei12 已提交
1109 1110 1111
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1112 1113
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1114
    program._sync_with_cpp()
T
tangwei12 已提交
1115
    return program
T
tangwei12 已提交
1116 1117


X
xuwei06 已提交
1118 1119
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1131

F
fengjiayi 已提交
1132 1133
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1134

F
fengjiayi 已提交
1135 1136 1137
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1138

X
xuwei06 已提交
1139
    """
X
xuwei06 已提交
1140 1141
    assert is_parameter(para)

X
xuwei06 已提交
1142 1143 1144 1145 1146 1147 1148 1149
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1150
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1151

F
fengjiayi 已提交
1152 1153 1154 1155 1156 1157 1158
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1159

F
fengjiayi 已提交
1160 1161
    Returns:
        numpy.array: The parameter's values.
1162

F
fengjiayi 已提交
1163 1164 1165 1166 1167
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1168

F
fengjiayi 已提交
1169 1170 1171 1172 1173
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1174 1175
    """
    if program is None:
Y
Yu Yang 已提交
1176
        program = default_main_program()
X
xuwei06 已提交
1177 1178
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)