conll05.py 9.1 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
Q
qijun 已提交
15
Conll05 dataset.
Q
qijun 已提交
16 17 18 19 20
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
D
dangqingqing 已提交
21 22
"""

Q
qijun 已提交
23 24 25
import tarfile
import gzip
import itertools
26
import paddle.dataset.common
M
minqiyang 已提交
27
import paddle.fluid.compat as cpt
M
minqiyang 已提交
28
from six.moves import zip, range
Q
qijun 已提交
29

Y
Your Name 已提交
30
__all__ = ['test, get_dict', 'get_embedding', 'convert']
Y
Yu Yang 已提交
31

D
dangqingqing 已提交
32 33
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
M
minqiyang 已提交
34
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/wordDict.txt'
D
dangqingqing 已提交
35
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
M
minqiyang 已提交
36
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/verbDict.txt'
D
dangqingqing 已提交
37
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
M
minqiyang 已提交
38
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/targetDict.txt'
D
dangqingqing 已提交
39
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
M
minqiyang 已提交
40
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/emb'
D
dangqingqing 已提交
41 42 43 44 45
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


J
jiaozhenyu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def load_label_dict(filename):
    d = dict()
    tag_dict = set()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            line = line.strip()
            if line.startswith("B-"):
                tag_dict.add(line[2:])
            elif line.startswith("I-"):
                tag_dict.add(line[2:])
        index = 0
        for tag in tag_dict:
            d["B-" + tag] = index
            index += 1
            d["I-" + tag] = index
            index += 1
        d["O"] = index
    return d


D
dangqingqing 已提交
66 67 68 69 70 71 72 73 74 75
def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
76
    Read one corpus. It returns an iterator. Each element of
D
dangqingqing 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
92
            for word, label in zip(words_file, props_file):
M
minqiyang 已提交
93 94
                word = cpt.to_literal_str(word.strip())
                label = cpt.to_literal_str(label.strip().split())
D
dangqingqing 已提交
95 96

                if len(label) == 0:  # end of sentence
97
                    for i in range(len(one_seg[0])):
D
dangqingqing 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
129 130
                                    raise RuntimeError('Unexpected label: %s' %
                                                       l)
D
dangqingqing 已提交
131 132 133 134 135 136 137 138 139 140

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

141 142 143 144
        pf.close()
        wf.close()
        tf.close()

D
dangqingqing 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

D
dangqingqing 已提交
194
            pred_idx = [predicate_dict.get(predicate)] * sen_len
D
dangqingqing 已提交
195 196
            label_idx = [label_dict.get(w) for w in labels]

D
dangqingqing 已提交
197 198
            yield word_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
D
dangqingqing 已提交
199

D
update  
dangqingqing 已提交
200
    return reader
D
dangqingqing 已提交
201 202 203


def get_dict():
Q
qijun 已提交
204 205 206
    """
    Get the word, verb and label dictionary of Wikipedia corpus.
    """
R
root 已提交
207
    word_dict = load_dict(
208
        paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
R
root 已提交
209
    verb_dict = load_dict(
210
        paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
J
jiaozhenyu 已提交
211
    label_dict = load_label_dict(
212
        paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
D
dangqingqing 已提交
213 214 215 216
    return word_dict, verb_dict, label_dict


def get_embedding():
Q
qijun 已提交
217 218 219
    """
    Get the trained word vector based on Wikipedia corpus.
    """
220
    return paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
D
dangqingqing 已提交
221 222 223


def test():
Q
qijun 已提交
224 225 226
    """
    Conll05 test set creator.

Q
qijun 已提交
227
    Because the training dataset is not free, the test dataset is used for
Q
qijun 已提交
228 229 230
    training. It returns a reader creator, each sample in the reader is nine
    features, including sentence sequence, predicate, predicate context,
    predicate context flag and tagged sequence.
Q
qijun 已提交
231

Q
qijun 已提交
232
    :return: Training reader creator
Q
qijun 已提交
233 234
    :rtype: callable
    """
D
dangqingqing 已提交
235 236
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
237
        paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5),
D
dangqingqing 已提交
238 239 240
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)
Y
Yancey1989 已提交
241 242


243
def fetch():
244 245 246 247 248
    paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5)
    paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5)
    paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5)
    paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
    paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5)
R
root 已提交
249 250


Y
Your Name 已提交
251
def convert(path):
R
root 已提交
252 253 254
    """
    Converts dataset to recordio format
    """
255 256
    paddle.dataset.common.convert(path, test(), 1000, "conl105_train")
    paddle.dataset.common.convert(path, test(), 1000, "conl105_test")