framework.py 63.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29
    'Block',
    'Variable',
    'Program',
    'Operator',
F
fengjiayi 已提交
30
    'Parameter',
31 32 33
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
34
    'get_var',
35
]
Y
Yu Yang 已提交
36

Q
qiaolongfei 已提交
37 38 39 40 41 42 43 44
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
45 46
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
47 48 49
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
50

51
def convert_np_dtype_to_dtype_(np_dtype):
52 53
    """
    Convert the data type in numpy to the data type in Paddle
54

55
    Args:
56
        np_dtype(np.dtype): the data type in numpy.
57

58 59
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
60 61

    """
62 63
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
64
        return core.VarDesc.VarType.FP32
65
    elif dtype == np.float64:
66
        return core.VarDesc.VarType.FP64
67
    elif dtype == np.float16:
68
        return core.VarDesc.VarType.FP16
69
    elif dtype == np.int32:
70
        return core.VarDesc.VarType.INT32
71
    elif dtype == np.int16:
72
        return core.VarDesc.VarType.INT16
73
    elif dtype == np.int64:
74
        return core.VarDesc.VarType.INT64
75
    elif dtype == np.bool:
76
        return core.VarDesc.VarType.BOOL
77 78
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
79 80
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
81 82 83 84 85
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
86 87 88
    """
    Check the data type is floating or not.
    Args:
89
        dtype(np.dtype|core.VarDesc.VarType): data type.
90 91 92 93 94
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
95
    if not isinstance(dtype, core.VarDesc.VarType):
96 97
        dtype = convert_np_dtype_to_dtype_(dtype)

98 99 100 101
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
102 103


Y
Yang Yang(Tony) 已提交
104
def _debug_string_(proto, throw_on_error=True):
105 106 107 108 109 110 111 112 113 114 115
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
116
    error_fields = list()
Y
Yang Yang(Tony) 已提交
117
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
118 119
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
120 121 122
    return proto.__str__()


Y
Yu Yang 已提交
123
class Variable(object):
124
    """
125 126 127 128
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
129

130 131
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
132

133
    Most of a Variable's member variables can be setted to be None. It mean 
134
    it is not available or will be specified later.
135 136

    Args:
137
        block(Block): The block that the variable belongs to.
138 139
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
140 141
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
142
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
143
            Some kinds of variable do not contain shape, just set it to None.
144 145 146
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
147
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
148
            series data.
149
            Default: None
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
172 173
    """

Y
Yu Yang 已提交
174 175
    def __init__(self,
                 block,
Y
Yu Yang 已提交
176
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
177 178 179 180
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
181
                 capacity=None,
Q
QI JUN 已提交
182
                 persistable=None,
F
fengjiayi 已提交
183
                 error_clip=None,
Y
Yu Yang 已提交
184
                 stop_gradient=False,
F
fengjiayi 已提交
185
                 is_data=False,
Y
Yu Yang 已提交
186
                 **kwargs):
Y
Yu Yang 已提交
187
        self.block = block
F
fengjiayi 已提交
188
        self.error_clip = error_clip
Y
Yu Yang 已提交
189 190

        if name is None:
Y
Yu Yang 已提交
191
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
192 193 194 195
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
196
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
197
            is_new_var = True
Y
Yu Yang 已提交
198

Y
Yu Yang 已提交
199 200 201 202 203 204 205 206
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
207
        if shape is not None:
Y
Yu Yang 已提交
208
            if is_new_var:
209
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
218
        if dtype is not None:
219
            if not isinstance(dtype, core.VarDesc.VarType):
220
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
221
            if is_new_var:
F
fengjiayi 已提交
222
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
223
            else:
F
fengjiayi 已提交
224
                old_dtype = self.dtype
Q
QI JUN 已提交
225
                if dtype != old_dtype:
Y
Yu Yang 已提交
226 227 228 229 230
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
231 232

        if lod_level is not None:
Y
Yu Yang 已提交
233
            if is_new_var:
234
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
235 236 237 238 239 240 241
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
242 243 244 245 246 247 248 249 250 251 252
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

253 254 255 256 257 258 259 260
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
261
        self.block.vars[name] = self
Y
Yu Yang 已提交
262
        self.op = None
Y
Yu Yang 已提交
263
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
264
        self.is_data = is_data
Y
Yu Yang 已提交
265

266
    def __str__(self):
Y
Yang Yang(Tony) 已提交
267 268
        return self.to_string(True)

F
update  
fengjiayi 已提交
269
    def to_string(self, throw_on_error, with_details=False):
270 271 272 273
        """
        Get debug string.

        Args:
274 275
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
276
            with_details(bool): more details about variables and parameters
277 278
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
279

280 281
        Returns:
            str: The debug string.
282
        """
F
update  
fengjiayi 已提交
283 284
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
285 286
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
287 288 289 290 291 292 293
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
294 295 296

    __repr__ = __str__

297
    def set_desc(self, input):
298 299 300 301 302 303 304 305 306
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
307 308
        self.desc = input

309 310 311 312
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
313 314 315 316
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
317 318
    @property
    def name(self):
319
        return self.desc.name()
Y
Yu Yang 已提交
320

T
typhoonzero 已提交
321 322 323 324
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
325 326 327
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
328
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
329 330

    @property
F
fengjiayi 已提交
331 332
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
333 334 335

    @property
    def lod_level(self):
336
        return self.desc.lod_level()
Y
Yu Yang 已提交
337

Y
Yu Yang 已提交
338 339 340 341
    @property
    def type(self):
        return self.desc.type()

342
    def set_error_clip(self, error_clip):
343 344 345 346 347 348 349 350 351
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
352 353
        self.error_clip = error_clip

Y
Yu Yang 已提交
354

F
fengjiayi 已提交
355 356 357
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
358

359 360
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
361 362 363 364 365 366 367 368 369 370
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
371 372 373 374
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
375 376 377 378 379 380 381 382 383
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
384
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
385 386 387 388 389 390
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
391 392 393 394 395 396 397 398
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
399 400
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
401 402
        return self.op_proto_map[type]

403 404 405 406 407 408 409
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
410

Y
Yu Yang 已提交
411
class Operator(object):
412
    """
413 414 415 416 417 418 419
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
420
        type(str): The type of operator. Default None.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
452
    """
453 454 455 456 457
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
458
        'channel_recv', 'select', 'gen_nccl_id'
459
    }
460

Y
Yu Yang 已提交
461 462
    def __init__(self,
                 block,
Y
Yu Yang 已提交
463
                 desc,
Y
Yu Yang 已提交
464 465 466 467
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
468

Y
Yu Yang 已提交
469
        self.block = block
Y
Yu Yang 已提交
470
        self.desc = desc
T
typhoonzero 已提交
471
        self.attrs = attrs
Y
yuyang18 已提交
472 473 474 475 476 477 478 479
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
480 481 482 483 484 485 486 487

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
488

F
fengjiayi 已提交
489 490 491 492 493
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
494
        self.desc.set_type(type)
F
fengjiayi 已提交
495
        proto = OpProtoHolder.instance().get_op_proto(type)
496

Y
Yang Yang(Tony) 已提交
497 498
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
499
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
500 501
                    return True
            return False
Q
QI JUN 已提交
502

Y
Yang Yang(Tony) 已提交
503 504 505 506 507 508 509
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
510 511 512 513
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
514 515
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
516 517 518
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
519 520 521 522
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
523
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
524 525
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
526

Y
Yu Yang 已提交
527
        if outputs is not None:
528 529 530 531 532 533 534
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
535 536
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
537 538
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
539

F
fengjiayi 已提交
540
            for out_proto in proto.outputs:
541 542 543 544
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
545 546
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
547 548 549 550 551 552
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
553

Y
yuyang18 已提交
554 555
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
556
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
557
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
558
                attr_name = attr.name
Y
yuyang18 已提交
559 560
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
561
                    continue
562 563
                attr_val = self.attrs[attr_name]
                if isinstance(attr_val, Block):
Y
yuyang18 已提交
564 565
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
566 567 568 569 570 571
                elif isinstance(attr_val, list) and attr_val and \
                      all(isinstance(v, Block) for v in attr_val):
                    self.desc.set_blocks_attr(attr_name,
                                              [v.desc for v in attr_val])
                elif isinstance(attr_val, core.BlockDesc) or \
                        isinstance(attr_val, core.ProgramDesc):
T
typhoonzero 已提交
572
                    self.desc.set_serialized_attr(
573
                        attr_name, attr_val.serialize_to_string())
Y
Yang Yang(Tony) 已提交
574
                else:
575
                    self.desc.set_attr(attr_name, attr_val)
576
        self.desc.check_attrs()
577
        if self.has_kernel(type):
Q
QI JUN 已提交
578
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
579
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
580

581 582 583
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
584
    def to_string(self, throw_on_error):
585
        """
586 587
        Get debug string.

588
        Args:
589 590
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
591

592 593
        Returns:
            str: The debug string.
594 595

        """
596 597
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
598 599 600 601
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
602 603 604

    __repr__ = __str__

F
fengjiayi 已提交
605 606 607 608 609
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
610
        """
611
        Get the input arguments according to the input parameter name.
612

613 614
        Args:
            name(str): The input parameter name.
615

616 617 618
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
619
        """
F
fengjiayi 已提交
620 621
        return self.desc.input(name)

T
typhoonzero 已提交
622
    def rename_input(self, old_name, new_name):
623 624 625 626 627 628 629 630 631 632
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
633 634 635
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
636 637 638 639 640 641 642 643 644 645
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
646 647
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
648 649 650 651
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
652 653 654 655 656 657 658 659
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
660
    def output(self, name):
661
        """
662
        Get output arguments by the output parameter name.
663

664 665
        Args:
            name(str): The output parameter name.
666

667 668 669
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
670
        """
F
fengjiayi 已提交
671 672 673 674 675 676
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

677 678 679 680 681 682 683 684
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
685
    def has_attr(self, name):
686
        """
687 688
        Whether this Operator has the attribute with name or not.

689
        Args:
690
            name(str): the attribute name.
691

692 693
        Returns:
            bool: True if has this attribute.
694 695

        """
F
fengjiayi 已提交
696 697 698
        return self.desc.has_attr(name)

    def attr_type(self, name):
699
        """
700
        Get the type of attribute by attribute's name.
701

702 703
        Args:
            name(str): the attribute name.
704

705 706
        Returns:
            core.AttrType: the attribute type.
707
        """
F
fengjiayi 已提交
708 709
        return self.desc.attr_type(name)

Y
yuyang18 已提交
710
    def set_attr(self, name, val):
711 712 713 714 715 716 717 718 719 720
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
721
        self.attrs[name] = val
Q
Qiyang Min 已提交
722 723
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
724 725 726
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
727 728 729 730 731
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
732

F
fengjiayi 已提交
733 734 735 736 737
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
738
        """
739 740
        Get the attribute by name.

741
        Args:
742
            name(str): the attribute name.
743

744 745
        Returns:
            bool|int|str|float|list: The attribute value. The return value
746 747
            can be any valid attribute type.
        """
F
fengjiayi 已提交
748
        return self.desc.attr(name)
Y
Yu Yang 已提交
749

F
fengjiayi 已提交
750
    def block_attr(self, name):
751
        """
752
        Get the block attribute by name.
753

754 755
        Args:
            name(str): the attribute name.
756

757 758
        Returns:
            int: the block index.
759
        """
F
fengjiayi 已提交
760
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
761

J
JiayiFeng 已提交
762
    def all_attrs(self):
F
fengjiayi 已提交
763
        """
764 765 766 767
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
768 769 770 771 772 773 774 775 776 777
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
778

Y
Yu Yang 已提交
779
class Block(object):
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
809
    def __init__(self, program, idx):
Y
Yu Yang 已提交
810
        self.desc = program.desc.block(idx)
811
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
812
        self.ops = list()  # operator list
Y
Yu Yang 已提交
813
        self.program = program
814
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
815

816
    def __str__(self):
Y
Yang Yang(Tony) 已提交
817 818
        return self.to_string(True)

F
fengjiayi 已提交
819 820
    def to_string(self, throw_on_error, with_details=False):
        """
821 822
        Get debug string.

F
fengjiayi 已提交
823 824
        Args:
            throw_on_error(bool): raise exception when self is not initialized
825
                when throw_on_error is True.
F
update  
fengjiayi 已提交
826
            with_details(bool): more details about variables and parameters
827 828
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
829

830 831
        Returns:
            str: The debug string.
F
fengjiayi 已提交
832 833 834 835
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
836
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
837 838 839
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
840
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
841
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
842
            for op in self.ops:
F
fengjiayi 已提交
843 844
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
845 846 847 848 849 850
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
851 852 853

    __repr__ = __str__

Y
Yu Yang 已提交
854 855
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
856
        return self.desc.parent
Y
Yu Yang 已提交
857

Y
Yu Yang 已提交
858 859 860 861 862
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
863 864 865 866 867 868 869 870 871
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
872 873
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
874 875
    @property
    def idx(self):
Y
Yu Yang 已提交
876
        return self.desc.id
Y
Yu Yang 已提交
877

Q
Qiao Longfei 已提交
878
    def var(self, name):
879 880 881 882 883 884 885 886 887 888 889 890 891
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
892
        if not isinstance(name, basestring):
893 894 895
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
896 897
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
898
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
899
        return v
Q
Qiao Longfei 已提交
900

F
fengjiayi 已提交
901
    def var_recursive(self, name):
902 903 904 905 906 907 908 909 910 911 912 913 914
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
941

Q
Qiao Longfei 已提交
942
    def all_parameters(self):
943 944 945 946 947
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
948

Y
Yu Yang 已提交
949
    def create_var(self, *args, **kwargs):
950
        var = Variable(block=self, *args, **kwargs)
951 952
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
953
        return var
Y
Yu Yang 已提交
954

Q
Qiao Longfei 已提交
955 956 957
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
958 959 960
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
961 962 963 964 965 966 967 968 969 970 971 972

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
973 974
        """
        if not self.has_var(name):
975
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
976 977
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
978
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
979 980 981 982 983 984 985
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
986
            var_type = "Variable"
T
wip  
typhoonzero 已提交
987 988 989 990
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
991
        orig_var_type = v.type
T
typhoonzero 已提交
992
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
993
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
994
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
995
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
996 997 998 999
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1000
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1001 1002 1003 1004 1005 1006 1007
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1008
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1009 1010
            var = Variable(
                self,
T
typhoonzero 已提交
1011
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1012 1013 1014 1015 1016 1017 1018 1019
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1020
        self.sync_with_cpp()
1021
        return var
T
typhoonzero 已提交
1022

1023 1024 1025 1026 1027
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1028 1029
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1030
        param = Parameter(global_block, *args, **kwargs)
1031 1032
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1033
        return param
Y
Yu Yang 已提交
1034

Y
Yu Yang 已提交
1035
    def append_op(self, *args, **kwargs):
1036 1037 1038 1039 1040 1041
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1042
        op_desc = self.desc.append_op()
1043
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1044 1045 1046
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1047
    def insert_op(self, index, *args, **kwargs):
1048 1049 1050 1051 1052 1053 1054 1055 1056
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1057 1058 1059 1060 1061 1062
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1063
    def remove_op(self, index):
1064 1065 1066 1067 1068 1069 1070 1071 1072
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1073 1074 1075 1076
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1077
    def slice_ops(self, start, end):
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1088
        return self.ops[start:end]
Y
Yancey1989 已提交
1089

Y
Yu Yang 已提交
1090
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1091 1092
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1093
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1094 1095
        return op

Q
Qiao Longfei 已提交
1096
    def sync_with_cpp(self):
1097
        """
1098 1099
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1100
        """
Q
Qiao Longfei 已提交
1101 1102 1103 1104 1105
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1106 1107 1108 1109 1110
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1111
        # sync operators from cpp
1112 1113 1114 1115
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1132 1133 1134 1135 1136

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1137
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1138 1139 1140 1141 1142 1143 1144

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1158 1159 1160 1161
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1162 1163
    def copy_param_info_from(self, other):
        """
1164 1165
        Copy the information of parameters from the other block.

1166
        Args:
1167 1168 1169 1170 1171
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1195
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1196
                error_clip=p.error_clip,
1197 1198 1199
                name=v.name)
            self.vars[new_p.name] = new_p

1200 1201 1202
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1203

1204 1205 1206 1207
        Args:
            var: the variable to be cloned.

        Returns:
1208
            Variable: the new  variable cloned from 'var' in current block.
1209 1210
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1211 1212 1213 1214 1215
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1216 1217 1218 1219 1220 1221
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1222 1223
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1224 1225 1226 1227 1228 1229 1230
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1231 1232
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1233
        return ret_var
1234

Y
Yu Yang 已提交
1235 1236

class Program(object):
D
dzhwinter 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1248
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1249 1250

    Returns:
Y
yuyang18 已提交
1251
        A empty program.
D
dzhwinter 已提交
1252 1253

    Examples:
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1260 1261 1262

    """

1263 1264
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1265 1266
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1267
        self._seed = 0
Y
yuyang18 已提交
1268
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1269
        self._op_role_var = []
Y
yuyang18 已提交
1270 1271 1272

    @property
    def op_role(self):
Y
yuyang18 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1286 1287 1288 1289 1290 1291 1292 1293
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1294 1295 1296 1297 1298 1299 1300
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1301 1302 1303 1304
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1305
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1306 1307 1308

    @contextlib.contextmanager
    def optimized_guard(self, var):
Y
yuyang18 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
            var(Variable|str): The variable (name) to be optimized.

        Examples:

            >>> p, g = backward(...)
Y
yuyang18 已提交
1321
            >>> with program.optimized_guard(p):
Y
yuyang18 已提交
1322 1323
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1324 1325
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1326
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1327
        yield
Y
yuyang18 已提交
1328
        self._op_role_var = []
Y
yuyang18 已提交
1329
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1330

1331
    def __str__(self):
Y
yuyang18 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1341 1342
        return self.to_string(True)

F
fengjiayi 已提交
1343 1344 1345
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1346

F
fengjiayi 已提交
1347
        Args:
Y
yuyang18 已提交
1348 1349
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1350

Y
yuyang18 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1374

1375
    def get_desc(self):
Y
yuyang18 已提交
1376 1377 1378 1379 1380 1381 1382
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1383 1384
        return self.desc

1385
    def clone(self, for_test=False):
Y
yuyang18 已提交
1386 1387 1388
        """
        Create a new, duplicated program.

1389

Y
yuyang18 已提交
1390 1391 1392 1393
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1394

Y
yuyang18 已提交
1395 1396 1397 1398 1399
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please.
1400 1401

        Args:
Y
yuyang18 已提交
1402 1403
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1404

D
dzhwinter 已提交
1405
        Returns:
Y
yuyang18 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1459 1460
        """
        if for_test:
1461
            p = self.inference_optimize()
1462
        else:
1463
            p = Program()
1464
            p.desc = core.ProgramDesc(self.desc)
1465 1466 1467
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1468
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1469
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1470
        return p
1471

1472
    def prune(self, targets):
Y
yuyang18 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1488 1489 1490 1491 1492 1493
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1494 1495
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1496
                    # and we need to find the current op that generate this
1497 1498 1499 1500 1501 1502 1503 1504
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1505
                    t = t.op
1506 1507 1508 1509
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1510
                else:
1511 1512
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1513 1514 1515 1516 1517 1518 1519 1520

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1521
    def inference_optimize(self):
Y
yuyang18 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1533 1534
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1535
        res = Program()
1536 1537 1538 1539 1540 1541 1542
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1543 1544 1545 1546
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1547 1548
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1561 1562
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1563
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1564 1565
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1566

D
dzhwinter 已提交
1567 1568
    @property
    def random_seed(self):
Y
yuyang18 已提交
1569 1570 1571 1572 1573 1574
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1575 1576
        return self._seed

Q
qiaolongfei 已提交
1577 1578
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1579 1580 1581
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1582 1583
        return self.desc.num_blocks()

D
dzhwinter 已提交
1584 1585 1586 1587 1588 1589
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1590 1591
    def __repr__(self):
        return str(self)
1592

Y
Yu Yang 已提交
1593
    def global_block(self):
Y
yuyang18 已提交
1594 1595 1596
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1597 1598
        return self.blocks[0]

Q
Qiao Longfei 已提交
1599
    def block(self, index):
Y
yuyang18 已提交
1600 1601 1602 1603 1604 1605 1606 1607
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1608 1609
        return self.blocks[index]

Y
Yu Yang 已提交
1610
    def current_block(self):
Y
yuyang18 已提交
1611 1612 1613 1614
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1615 1616
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1617
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1628
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1629 1630 1631
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1632 1633 1634 1635 1636
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1637 1638 1639 1640 1641
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1642 1643
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1644
    def sync_with_cpp(self):
Y
yuyang18 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1655 1656 1657 1658 1659
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1660 1661
    def copy_param_info_from(self, other):
        """
1662
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1663

Y
yuyang18 已提交
1664 1665 1666
        Notes: This is a very low level API. Users should not invoke it
        directly.

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1682 1683 1684
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1685

Y
yuyang18 已提交
1686 1687 1688
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1706
    def list_vars(self):
Y
yuyang18 已提交
1707 1708 1709 1710 1711 1712
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1713 1714 1715 1716
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1717

Y
Yu Yang 已提交
1718
class Parameter(Variable):
1719 1720 1721 1722 1723 1724
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1725
    Relative to a general Variable, a Parameter has several its own
1726 1727
    member variables:

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1740 1741
    """

Y
Yu Yang 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1752 1753 1754

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1755 1756 1757 1758
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1759 1760
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1761
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1762

W
wanghaoshuang 已提交
1763
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1764

F
fengjiayi 已提交
1765 1766 1767
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1768 1769 1770
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1771

F
update  
fengjiayi 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1786
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1787 1788 1789 1790 1791
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1792 1793 1794 1795
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1796

Y
Yu Yang 已提交
1797
# program is a global instance.
Y
Yu Yang 已提交
1798 1799
_main_program_ = Program()
_startup_program_ = Program()
1800

1801

1802
def default_startup_program():
Y
Yu Yang 已提交
1803
    """
Y
yuyang18 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1813

Y
Yu Yang 已提交
1814 1815 1816
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1817
    return _startup_program_
1818

1819

1820
def default_main_program():
Y
Yu Yang 已提交
1821
    """
Y
yuyang18 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1831

Y
Yu Yang 已提交
1832 1833 1834
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1835
    return _main_program_
Y
Yu Yang 已提交
1836 1837 1838 1839 1840


def switch_main_program(program):
    """
    Switch the main program to a new program.
1841

Y
Yu Yang 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1856
    Switch the startup program to a new program
Y
Yu Yang 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1872 1873 1874
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1875

Y
Yu Yang 已提交
1876
    Examples:
Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1887

Y
Yu Yang 已提交
1888
    Examples:
Y
yuyang18 已提交
1889 1890 1891 1892 1893 1894

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1895

Y
Yu Yang 已提交
1896
    Args:
Y
yuyang18 已提交
1897
        main_program(Program): New main program inside `with` statement.
1898
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1912 1913 1914 1915


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1916 1917
    Get a variable by name from the global block of a program.
    
X
xuwei06 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1929
    assert isinstance(program, Program)
X
xuwei06 已提交
1930 1931

    return program.global_block().var(name)