recurrent_op.cc 24.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yu Yang 已提交
15
#include <vector>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21 22 23 24 25 26 27
constexpr char kInputs[] = "inputs";
constexpr char kInitialStates[] = "initial_states";
constexpr char kParameters[] = "parameters";
constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes";
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
28
constexpr char kStepBlock[] = "sub_block";
Y
Yu Yang 已提交
29 30 31 32 33 34 35
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
Y
Yan Chunwei 已提交
36

Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
using StepScopeVar = std::vector<framework::Scope *>;

// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
class StepScopes {
 public:
  StepScopes(const framework::Scope &parent, StepScopeVar *scopes,
             bool is_train, size_t seq_len, bool is_backward = false)
      : counter_(is_backward ? seq_len - 1 : 0UL),
        scopes_(scopes),
        is_train_(is_train),
        is_backward_(is_backward) {
    size_t num_step_scopes = is_train ? seq_len : 2;
    PADDLE_ENFORCE(is_train || !is_backward,
                   "Cannot backward when is not training");
    if (!is_backward_) {
      PADDLE_ENFORCE(scopes->empty());
      scopes->reserve(static_cast<size_t>(num_step_scopes));
      for (size_t i = 0; i < num_step_scopes; ++i) {
        scopes->emplace_back(&parent.NewScope());
      }
Y
Yan Chunwei 已提交
70
    }
Y
Yu Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }

  framework::Scope &CurScope() { return GetScope(counter_); }

  framework::Scope &ExScope() {
    auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
    return scope;
  }

  void Next() {
    if (is_backward_) {
      --counter_;
    } else {
      ++counter_;
    }
  }

 private:
  framework::Scope &GetScope(size_t scope_id) const {
    if (!is_train_) {
      scope_id %= 2;
    }
    PADDLE_ENFORCE_LT(scope_id, scopes_->size());
    return *(*scopes_)[scope_id];
  }

  size_t counter_;
  StepScopeVar *scopes_;
  bool is_train_;
  bool is_backward_;
};

// Base class for RecurrentOp/RecurrentGradOp
//    Some common protected functions for RecurrentOp/RecurrentGradOp
class RecurrentBase : public framework::OperatorBase {
 public:
  RecurrentBase(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  // Get SequenceLength from Scope
  //   The sequence length is got from input tensor. The input tensor's
  //   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
  //   is SEQ_LEN. The second of the tensor's shape could be the batch size or
  //   nested sequence length.
  int64_t GetSequenceLength(const framework::Scope &scope) const {
    // Dim format SEQ_LEN, BATCH_SIZE, ...
    int64_t seq_len = -1;
    auto &all_inputs = Inputs(kInputs);
    PADDLE_ENFORCE(!all_inputs.empty());
    for (auto &iname : all_inputs) {
      auto *var = scope.FindVar(iname);
      PADDLE_ENFORCE(var != nullptr);
      PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
      auto &dim = var->Get<framework::LoDTensor>().dims();
      if (seq_len == -1) {
        seq_len = dim[0];
      } else {
        PADDLE_ENFORCE_EQ(seq_len, dim[0]);
      }
    }
    return seq_len;
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   dst_tensor.ShareDataWith(src_tensor)
  static void LinkTensor(const framework::Scope &src_scope,
                         const std::vector<std::string> &src_vars,
                         framework::Scope *dst_scope,
                         const std::vector<std::string> &dst_vars) {
    LinkTensorWithCallback(
        src_scope, src_vars, dst_scope, dst_vars,
        [&](const framework::Tensor &src, framework::Tensor *dst) {
          dst->ShareDataWith(src);
        });
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     framework::Scope *dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduozh 已提交
160 161
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
162 163
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
164
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduozh 已提交
165 166
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175 176 177
    }
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.FindVar, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     const framework::Scope &dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduozh 已提交
178 179
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
180 181
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
182
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduozh 已提交
183 184
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    }
  }

  // (seq_len, shape) -> return [seq_len] + list(shape)
  static framework::DDim PrependDims(size_t seq_len,
                                     const framework::DDim &src) {
    auto dims = framework::vectorize(src);
    dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
    return framework::make_ddim(dims);
  }

 private:
  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           framework::Scope *dst_scope,
C
chengduozh 已提交
201 202
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
Y
Yu Yang 已提交
203
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduozh 已提交
204 205 206 207
    if (is_backward && src_var == nullptr) {
      return;
    }
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215 216 217 218
    auto &src_tensor = src_var->Get<framework::LoDTensor>();

    auto *dst_var = dst_scope->Var(dst_var_name);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }

  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           const framework::Scope &dst_scope,
C
chengduozh 已提交
219 220 221 222 223 224
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
    auto *dst_var = dst_scope.FindVar(dst_var_name);
    if (is_backward && dst_var == nullptr) {
      return;
    }
Y
Yu Yang 已提交
225
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduozh 已提交
226
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
227
    auto &src_tensor = src_var->Get<framework::LoDTensor>();
C
chengduozh 已提交
228
    PADDLE_ENFORCE(dst_var != nullptr, "%s is not found.", dst_var_name);
Y
Yu Yang 已提交
229 230 231 232 233 234 235 236 237 238 239 240
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }
};

class RecurrentOp : public RecurrentBase {
 public:
  RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

241 242 243
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
Y
Yu Yang 已提交
244
    auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
M
minqiyang 已提交
245
    VLOG(3) << "Static RNN input sequence length = " << seq_len;
Y
Yu Yang 已提交
246 247 248
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
249
    framework::Executor executor(place);
Y
Yu Yang 已提交
250
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
251

Y
Yu Yang 已提交
252 253 254 255
    auto *program = block->Program();

    for (size_t i = 0; i < seq_len; ++i) {
      size_t seq_offset = reverse ? seq_len - i - 1 : i;
M
minqiyang 已提交
256
      VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

      auto &cur_scope = scopes.CurScope();

      // Link outside::input --> inside::input
      //   inside::input = outside::input[seq_offset: seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
          [&seq_offset](const framework::Tensor &outside,
                        framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });

      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }

      // Every inputs are linked now, execute!
      executor.Run(*program, &cur_scope, block->ID(),
                   false /*create_local_scope*/);

D
dzhwinter 已提交
287
      // get device context from pool
Y
Yu Yang 已提交
288 289 290
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
291

Y
Yu Yang 已提交
292 293 294 295 296 297 298 299
      // Copy inside::output -> outside::output
      //    outside::output[seq_offset: seq_offset + 1] = inside::output
      this->LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            if (i == 0) {  // create output tensor at begin
              dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
D
dzhwinter 已提交
300
              dst_tensor->mutable_data(place, src_tensor.type());
Y
Yu Yang 已提交
301 302 303 304 305
            }

            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
Y
Yi Wang 已提交
306
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
Y
Yu Yang 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
          });

      scopes.Next();
    }
  }

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
    auto *var = scope.FindVar(Output(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len);
  }
};

class RecurrentGradOp : public RecurrentBase {
 public:
  RecurrentGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

331 332 333
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
Y
Yu Yang 已提交
334 335 336 337
    auto seq_len = static_cast<size_t>(GetSequenceLength(scope));
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
338
    framework::Executor executor(place);
Y
Yu Yang 已提交
339
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
340

Y
Yu Yang 已提交
341 342
    auto *program = block->Program();

D
dzhwinter 已提交
343
    // get device context from pool
Y
Yu Yang 已提交
344 345
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
346

Y
Yu Yang 已提交
347 348
    for (size_t step_id = 0; step_id < seq_len; ++step_id) {
      size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
M
minqiyang 已提交
349
      VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
Y
Yu Yang 已提交
350 351 352 353 354 355 356 357 358 359
      auto &cur_scope = scopes.CurScope();
      // Link outside::output_grads --> inside::output_grads
      //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
          [&](const framework::Tensor &outside, framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
C
chengduozh 已提交
360 361
          },
          true /*is_backward*/);
Y
Yu Yang 已提交
362 363
      auto og_set = List2Set(Inputs(kOutputGrads));

M
minqiyang 已提交
364
      if (VLOG_IS_ON(10)) {
Y
Yu Yang 已提交
365 366 367
        std::ostringstream sout;
        std::copy(og_set.begin(), og_set.end(),
                  std::ostream_iterator<std::string>(sout, ","));
M
minqiyang 已提交
368
        VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
Y
Yu Yang 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
      }

      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
          auto &ex_tensor =
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

M
minqiyang 已提交
390
          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
Y
Yu Yang 已提交
391 392 393
          auto *cur_grad_var = cur_scope.Var(cur_grad);
          auto cur_grad_tensor =
              cur_grad_var->GetMutable<framework::LoDTensor>();
Y
Yi Wang 已提交
394
          framework::TensorCopy(ex_tensor, place, dev_ctx, cur_grad_tensor);
Y
Yu Yang 已提交
395
        }
Y
Yan Chunwei 已提交
396
      }
Y
Yu Yang 已提交
397

M
minqiyang 已提交
398
      VLOG(5) << "Recurrent memory linking finished ";
Y
Yu Yang 已提交
399 400 401 402
      // Run step block with cur_scope
      executor.Run(*program, &cur_scope, block->ID(),
                   false /*create_local_scope*/);

M
minqiyang 已提交
403
      VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
404 405 406 407 408 409 410 411 412 413 414 415

      auto local_var_names = LocalVarNames(cur_scope);

      // Accumulate params
      //   if (step == 0):
      //      outside::param_grad = 0.0
      //   outside::param_grad += inside::param_grad
      {
        auto &pg_names = Outputs(kParamGrads);
        auto &p_names = Inputs(kParameters);
        PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());

Y
Yu Yang 已提交
416 417
        for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
          auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
418 419 420 421 422 423 424 425 426 427 428 429

          // If does not compute gradient of that variable inside rnn, just
          // continue
          if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
            continue;
          }

          // zero gradient variable in step 0
          if (step_id == 0) {
            auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
                                      ->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
430
            attrs["dtype"] = inside_tensor.type();
Y
Yu Yang 已提交
431 432 433 434
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
435 436
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
D
dzhwinter 已提交
437
            zero_op->Run(scope, place);
Y
Yu Yang 已提交
438 439
          }

Y
Yu Yang 已提交
440
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
441 442 443
          // sum gradient

          auto sum_op = framework::OpRegistry::CreateOp(
Y
Yu Yang 已提交
444
              "sum", {{"X", {pg_names[param_id], new_inside_name}}},
445 446
              {{"Out", {pg_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
447
          sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
448 449

          cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yu Yang 已提交
450
        }
Y
Yan Chunwei 已提交
451
      }
M
minqiyang 已提交
452
      VLOG(5) << "Accumulate Parameter finished ";
Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462 463 464

      // Copy input gradient from inside to outside
      //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            if (step_id == 0) {  // alloc memory
              outside->Resize(PrependDims(seq_len, inside.dims()));
D
dzhwinter 已提交
465
              outside->mutable_data(place, inside.type());
Y
Yu Yang 已提交
466 467 468
            }

            auto dst = outside->Slice(seq_offset, seq_offset + 1);
Y
Yi Wang 已提交
469
            framework::TensorCopy(inside, place, dev_ctx, &dst);
C
chengduozh 已提交
470 471
          },
          true /*is_backward*/);
M
minqiyang 已提交
472
      VLOG(5) << "Link outside gradient finished ";
Y
Yu Yang 已提交
473 474 475 476 477 478 479 480 481

      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
482
              outside->mutable_data(place, inside.type());
Y
Yi Wang 已提交
483
              framework::TensorCopy(inside, place, dev_ctx, outside);
C
chengduozh 已提交
484 485
            },
            true /*is_backward*/);
M
minqiyang 已提交
486
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
487 488
      }
      scopes.Next();
Y
Yan Chunwei 已提交
489 490
    }
  }
Y
Yu Yang 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
  }

  std::unordered_set<std::string> List2Set(
      const std::vector<std::string> &list) const {
    std::unordered_set<std::string> local_var_name_set;
    local_var_name_set.reserve(list.size());
    for (auto &each : list) {
      local_var_name_set.insert(each);
    }
    return local_var_name_set;
  }

  std::unordered_set<std::string> LocalVarNames(
      const framework::Scope &scope) const {
Y
Yang Yu 已提交
513
    return this->List2Set(scope.LocalVarNames());
Y
Yu Yang 已提交
514 515 516 517 518 519 520 521 522 523 524 525
  }
  static std::vector<std::string> GradVarLists(
      const std::vector<std::string> &var_names) {
    std::vector<std::string> retv;
    retv.reserve(var_names.size());
    std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                   framework::GradVarName);
    return retv;
  }
};

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
526
 public:
Y
Yu Yang 已提交
527
  void Make() override {
Y
Yu Yang 已提交
528 529 530 531
    AddInput(kInputs, "rnn inputs").AsDuplicable();
    AddInput(kInitialStates, "rnn initial states").AsDuplicable();
    AddInput(kParameters,
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
532 533
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
534
        .AsDuplicable();
Y
Yu Yang 已提交
535
    AddOutput(kOutputs,
K
kexinzhao 已提交
536
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
537
        .AsDuplicable();
Y
Yu Yang 已提交
538
    AddOutput(kStepScopes,
K
kexinzhao 已提交
539
              "StepScopes contain all local variables in each time step.");
Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550
    AddAttr<std::vector<std::string>>(kExStates,
                                      string::Sprintf(
                                          R"DOC(The ex-state variable names.
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
                                          kExStates, kStates, kInitStateGrads));
    AddAttr<std::vector<std::string>>(
        kStates,
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
            kExStates, kStates, kInitStateGrads));
Y
Yu Yang 已提交
551
    AddAttr<framework::BlockDesc *>(kStepBlock, "The step block inside RNN");
Y
Yu Yang 已提交
552 553
    AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
By default reverse=False
Y
Yan Chunwei 已提交
554

Y
Yu Yang 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
    AddAttr<bool>(kIsTrain, "").SetDefault(true);
K
kexinzhao 已提交
578 579 580 581 582
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
583 584 585 586 587 588 589 590

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
591

Y
Yu Yang 已提交
592
 protected:
Y
Yu Yang 已提交
593 594
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
595 596 597 598
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
599
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613
    }

    for (auto &output_param : this->OutputNames()) {
      if (output_param == kStepScopes) {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
614
    grad->SetBlockAttr(kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
615

Y
Yu Yang 已提交
616
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
617 618 619
  }
};

Y
Yu Yang 已提交
620 621 622 623 624 625
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    std::vector<std::string> input{kInputs, kInitialStates};
    std::vector<std::string> output{kOutputs};
    for (auto &s : input) {
C
chengduozh 已提交
626
      // NOTE(zcd): In some case, some of kInputs doesn't have gradient.
C
chengduozh 已提交
627
      PADDLE_ENFORCE(ctx->HasInputs(s));
Y
Yu Yang 已提交
628 629 630 631 632 633
    }
    for (auto &s : output) {
      PADDLE_ENFORCE(ctx->HasInputs(s));
    }
    for (auto &s : input) {
      ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s));
Y
Yan Chunwei 已提交
634
    }
Y
Yu Yang 已提交
635 636 637 638 639 640 641
    if (ctx->HasInputs(kParameters)) {
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
      ctx->SetOutputsDim(framework::GradVarName(kParameters),
                         ctx->GetInputsDim(kParameters));
    }
  }
};
Y
Yan Chunwei 已提交
642 643 644 645

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
646 647 648 649 650
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);