未验证 提交 95924686 编写于 作者: Y Yiqun Liu 提交者: GitHub

Fix gcc4.9 (#6442)

* Fix compiling error of gcc4.9.

* Refine the check of cxx compiler flags in api/CMakeLists.txt.
上级 74ead9dc
......@@ -25,8 +25,18 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
SET(SWIG_NEED_FLAGS
-ftls-model=global-dynamic
-Wno-parentheses-equality
-Wno-self-assign
-Wno-maybe-uninitialized
-Wno-missing-field-initializers)
FOREACH(flag ${SWIG_NEED_FLAGS})
safe_set_cxxflag(SWIG_CXX_FLAGS ${flag})
ENDFOREACH()
SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR})
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SWIG_CXX_FLAGS}")
SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS
paddle_parameter
......
......@@ -190,8 +190,9 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// collect all the offset for each alias,
// insert a sum operator to add all aliases to output
insert_position.push_back(
{dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}},
{{"Out", {name}}}, {})});
{dup_op.back(),
OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, {{"Out", {name}}},
AttributeMap{})});
}
// make sure the inserted `sum` ops follow the BFS order.
......@@ -216,7 +217,8 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
{{"Y", {grad_input}}}, {}));
{{"Y", {grad_input}}},
AttributeMap{}));
}
return false;
});
......@@ -392,8 +394,9 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
std::string new_name = prefix + kZeroVarSuffix;
desc->Rename(in_name, new_name);
std::unique_ptr<OpDescBind> fill_zeros_op(new OpDescBind(
"fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {}));
std::unique_ptr<OpDescBind> fill_zeros_op(
new OpDescBind("fill_zeros_like", {{"X", {prefix}}},
{{"Y", {new_name}}}, AttributeMap{}));
pending_fill_zeros_ops.push_back(std::move(fill_zeros_op));
}
}
......@@ -483,8 +486,9 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
sum_op_inputs.emplace_back(new_name);
next_g_name = sum_op_inputs.back();
}
std::unique_ptr<OpDescBind> sum_op(new OpDescBind(
"sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {}));
std::unique_ptr<OpDescBind> sum_op(
new OpDescBind("sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}},
AttributeMap{}));
pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
}
}
......
......@@ -106,15 +106,15 @@ class FcOp : public operators::NetOp {
FcOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_result")}}}, {}));
AppendOp(OpRegistry::CreateOp(
"mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_result")}}}, AttributeMap{}));
auto input_b = Inputs("b");
std::string before_act = "mul_result";
if (input_b.size() != 0) {
AppendOp(OpRegistry::CreateOp(
"rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
{{"Out", {Output("add_result")}}}, {}));
{{"Out", {Output("add_result")}}}, AttributeMap{}));
before_act = "add_result";
} else {
auto out_varname = Output("add_result");
......@@ -124,7 +124,7 @@ class FcOp : public operators::NetOp {
}
AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
{{"Out", {Output("Out")}}}, {}));
{{"Out", {Output("Out")}}}, AttributeMap{}));
CompleteAddOp(false);
}
};
......@@ -278,8 +278,9 @@ REGISTER_OPERATOR(scale, f::NoneOp);
REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel<paddle::platform::CPUPlace, float>);
TEST(Backward, simple_op_not_need_grad) {
auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
auto fwd =
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
{{"Out", {"out"}}}, f::AttributeMap{});
ASSERT_NE(fwd, nullptr);
auto gop = f::Backward(*fwd, {"x"});
ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);
......@@ -296,9 +297,10 @@ TEST(Backward, net_fc_backward_normal) {
{{"mul_result", {"mul_res"}},
{"add_result", {"add_re"}},
{"Out", {"out"}}},
{});
f::AttributeMap{});
ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
std::shared_ptr<f::OperatorBase> gop =
f::Backward(*fwd, std::unordered_set<std::string>{});
ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<ops::NetOp *>(gop.get());
......@@ -322,9 +324,10 @@ TEST(Backward, net_fc_backward_not_have_b) {
{{"mul_result", {"mul_res"}},
{"add_result", {"add_res"}},
{"Out", {"tmp"}}},
{});
f::AttributeMap{});
ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
std::shared_ptr<f::OperatorBase> gop =
f::Backward(*fwd, std::unordered_set<std::string>{});
ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<ops::NetOp *>(gop.get());
......@@ -346,13 +349,13 @@ TEST(Backward, net_input_of_network_not_need_grad) {
{{"mul_result", {"mul_tmp_0"}},
{"add_result", {"add_tmp_0"}},
{"Out", {"hidden0"}}},
{}));
f::AttributeMap{}));
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_tmp_1"}},
{"add_result", {"add_tmp_1"}},
{"Out", {"hidden1"}}},
{}));
f::AttributeMap{}));
net.CompleteAddOp();
auto bwd = Backward(net, {"x"}); // x@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp());
......@@ -381,12 +384,13 @@ TEST(Backward, net_input_of_network_not_need_grad) {
TEST(Backward, net_shared_weight) {
ops::NetOp net;
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
{{"Out", {"out"}}}, {}));
{{"Out", {"out"}}}, f::AttributeMap{}));
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
{{"Out", {"FinalOut"}}}, {}));
{{"Out", {"FinalOut"}}},
f::AttributeMap{}));
net.CompleteAddOp();
auto bwd = f::Backward(net, {});
auto bwd = f::Backward(net, std::unordered_set<std::string>{});
ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size());
......@@ -394,8 +398,9 @@ TEST(Backward, net_shared_weight) {
}
TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
auto fwd =
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
{{"Out", {"out"}}}, f::AttributeMap{});
auto backward = f::Backward(*fwd, {"x", "b"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get());
......@@ -403,8 +408,9 @@ TEST(Backward, op_all_input_are_not_need) {
}
TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
auto fwd =
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
{{"Out", {"out"}}}, f::AttributeMap{});
auto backward = f::Backward(*fwd, {"out"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get());
......@@ -412,8 +418,9 @@ TEST(Backward, op_all_output_are_not_need) {
}
TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
{{"y", {"Y"}}, {"z", {"Z"}}}, {});
auto fwd =
f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
{{"y", {"Y"}}, {"z", {"Z"}}}, f::AttributeMap{});
auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get());
......@@ -437,7 +444,7 @@ TEST(Backward, op_part_of_output_are_not_need) {
TEST(Backward, op_part_of_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
{{"Out", {"out"}}}, {});
{{"Out", {"out"}}}, f::AttributeMap{});
auto backward = f::Backward(*fwd, {"a"});
auto &grad_mul = *backward;
ASSERT_EQ(grad_mul.Type(), "mul_grad");
......@@ -458,19 +465,19 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
{{"mul_result", {"mul_out1"}},
{"add_result", {"add_out1"}},
{"Out", {"out1"}}},
{}));
f::AttributeMap{}));
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_out2"}},
{"add_result", {"tmp_out2"}},
{"Out", {"out2"}}},
{}));
f::AttributeMap{}));
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
{{"mul_result", {"mul_out3"}},
{"add_result", {"tmp_out3"}},
{"Out", {"out3"}}},
{}));
f::AttributeMap{}));
net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
......@@ -509,7 +516,8 @@ TEST(Backward, simple_single_op) {
auto target = f::VarDescBind("out");
target.SetShape({1});
auto var_to_grad = AppendBackward(program, target, {});
auto var_to_grad =
AppendBackward(program, target, std::unordered_set<std::string>{});
ASSERT_EQ(block->AllOps().size(), 3UL);
f::OpDescBind *fill_op = block->AllOps()[1];
......@@ -546,7 +554,7 @@ TEST(Backward, default_attribute) {
auto target = f::VarDescBind("out");
target.SetShape({1});
AppendBackward(program, target, {});
AppendBackward(program, target, std::unordered_set<std::string>{});
ASSERT_EQ(block->AllOps().size(), 3UL);
EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
......@@ -585,7 +593,8 @@ TEST(Backward, simple_mult_op) {
auto target = f::VarDescBind("out3");
target.SetShape({1});
size_t forward_len = block->AllOps().size();
auto var_to_grad = AppendBackward(program, target, {});
auto var_to_grad =
AppendBackward(program, target, std::unordered_set<std::string>{});
ASSERT_EQ(block->AllOps().size(), 6UL + 1);
f::OpDescBind *fill_op = block->AllOps()[forward_len];
......@@ -817,7 +826,8 @@ TEST(Backward, shared_var) {
auto target = f::VarDescBind("out3");
target.SetShape({1});
size_t forward_len = block->AllOps().size();
auto var_to_grad = AppendBackward(program, target, {});
auto var_to_grad =
AppendBackward(program, target, std::unordered_set<std::string>{});
ASSERT_EQ(block->AllOps().size(), 8UL);
f::OpDescBind *fill_op = block->AllOps()[forward_len];
......
......@@ -316,8 +316,8 @@ static void InitInferShapeFuncs() {
for (auto &kern_pair : OperatorWithKernel::AllOpKernels()) {
auto op_type = kern_pair.first;
auto &op_info = info_map.at(op_type);
auto op =
static_cast<OperatorWithKernel *>(op_info.Creator()("", {}, {}, {}));
auto op = static_cast<OperatorWithKernel *>(op_info.Creator()(
"", VariableNameMap{}, VariableNameMap{}, AttributeMap{}));
if (op_info.infer_shape_) { // infer_shape has been registered.
continue;
}
......
......@@ -261,7 +261,9 @@ class OperatorClone : public paddle::framework::OperatorBase {
};
TEST(Operator, Clone) {
OperatorClone a("ABC", {}, {}, {});
OperatorClone a("ABC", paddle::framework::VariableNameMap{},
paddle::framework::VariableNameMap{},
paddle::framework::AttributeMap{});
auto b = a.Clone();
ASSERT_EQ(a.Type(), b->Type());
}
......@@ -54,7 +54,8 @@ TEST(Prune, one_operator) {
f::ProgramDescBind program;
f::BlockDescBind *block = program.MutableBlock(0);
AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block);
AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{},
block);
f::ProgramDesc *pdesc = program.Proto();
f::ProgramDesc pruned;
......@@ -71,10 +72,14 @@ TEST(Prune, forward) {
f::ProgramDescBind program;
f::BlockDescBind *block = program.MutableBlock(0);
AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, {}, block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, {}, block);
AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, {}, block);
AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, f::AttributeMap{},
block);
f::ProgramDesc *pdesc = program.Proto();
......@@ -90,11 +95,14 @@ TEST(Prune, multi_input_op) {
f::ProgramDescBind program;
f::BlockDescBind *block = program.MutableBlock(0);
AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, {}, block);
AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, {}, block);
AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, {}, block);
AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, {},
AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, f::AttributeMap{},
block);
AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}},
f::AttributeMap{}, block);
f::ProgramDesc *pdesc = program.Proto();
pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true);
......@@ -108,9 +116,12 @@ TEST(Prune, multi_output_op) {
f::ProgramDescBind program;
f::BlockDescBind *block = program.MutableBlock(0);
AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block);
AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}},
f::AttributeMap{}, block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{},
block);
f::ProgramDesc *pdesc = program.Proto();
pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true);
......@@ -124,9 +135,12 @@ TEST(Prune, multi_target) {
f::ProgramDescBind program;
f::BlockDescBind *block = program.MutableBlock(0);
AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block);
AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}},
f::AttributeMap{}, block);
AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
block);
AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{},
block);
f::ProgramDesc *pdesc = program.Proto();
pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true);
......
......@@ -142,9 +142,9 @@ class ConditionalBlockGradOp : public ConditionalOp {
continue;
}
auto new_in_grad_name = cur_scope.Rename(in_grad_name);
auto assign =
framework::OpRegistry::CreateOp("assign", {{"X", {new_in_grad_name}}},
{{"Out", {out_grad_name}}}, {});
auto assign = framework::OpRegistry::CreateOp(
"assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
framework::AttributeMap{});
assign->Run(cur_scope, dev_ctx);
cur_scope.Rename(new_in_grad_name, in_grad_name);
}
......
......@@ -38,7 +38,10 @@ namespace operators {
class NetOp : public framework::OperatorBase {
public:
static const char kAll[];
NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {}
NetOp()
: framework::OperatorBase("plain_net", framework::VariableNameMap{},
framework::VariableNameMap{},
framework::AttributeMap{}) {}
NetOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
......
......@@ -38,10 +38,10 @@ TEST(OpKernel, all) {
net->AppendOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {})));
{{"Out", {"y"}}}, framework::AttributeMap{})));
net->AppendOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"Out", {"z"}}}, {})));
{{"Out", {"z"}}}, framework::AttributeMap{})));
net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"},
......@@ -58,7 +58,7 @@ TEST(NetOp, insert_op) {
NetOp net;
auto op1 = std::unique_ptr<framework::NOP>(
new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {}));
{{"Out", {"y"}}}, framework::AttributeMap{}));
net.AppendOp(*op1);
net.InsertOp(0, *op1);
ASSERT_EQ(2UL, net.ops_.size());
......@@ -68,10 +68,12 @@ TEST(NetOp, insert_op) {
TEST(NetOp, Clone) {
NetOp net;
net.AppendOp(
std::unique_ptr<framework::NOP>(new framework::NOP{"empty", {}, {}, {}}));
net.AppendOp(std::unique_ptr<framework::NOP>(
new framework::NOP{"empty2", {}, {}, {}}));
net.AppendOp(std::unique_ptr<framework::NOP>(new framework::NOP{
"empty", framework::VariableNameMap{}, framework::VariableNameMap{},
framework::AttributeMap{}}));
net.AppendOp(std::unique_ptr<framework::NOP>(new framework::NOP{
"empty2", framework::VariableNameMap{}, framework::VariableNameMap{},
framework::AttributeMap{}}));
net.CompleteAddOp(true);
auto new_net_op = net.Clone();
ASSERT_NE(new_net_op, nullptr);
......
......@@ -408,7 +408,8 @@ class RecurrentGradOp : public RecurrentBase {
attrs["value"] = 0.0f;
auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs);
"fill_constant", framework::VariableNameMap{},
{{"Out", {pg_names[param_id]}}}, attrs);
zero_op->Run(scope, dev_ctx);
}
......@@ -417,7 +418,7 @@ class RecurrentGradOp : public RecurrentBase {
auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {pg_names[param_id], new_inside_name}}},
{{"Out", {pg_names[param_id]}}}, {});
{{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
sum_op->Run(cur_scope, dev_ctx);
cur_scope.Rename(new_inside_name, inside_grad_name);
......
......@@ -187,7 +187,8 @@ class WhileGradOp : public framework::OperatorBase {
attrs["value"] = 0.0f;
auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs);
"fill_constant", framework::VariableNameMap{},
{{"Out", {pg_names[param_id]}}}, attrs);
zero_op->Run(scope, dev_ctx);
}
}
......@@ -195,7 +196,7 @@ class WhileGradOp : public framework::OperatorBase {
auto new_inside_name = cur_scope.Rename(inside_grad_name);
auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {pg_names[param_id], new_inside_name}}},
{{"Out", {pg_names[param_id]}}}, {});
{{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
sum_op->Run(cur_scope, dev_ctx);
cur_scope.Rename(new_inside_name, inside_grad_name);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册