coco.py 23.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
16 17 18 19 20
import copy
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
21 22 23 24 25 26 27
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

28 29 30
__all__ = [
    'COCODataSet', 'SlicedCOCODataSet', 'SemiCOCODataSet', 'COCODetDataset'
]
31

Q
qingqing01 已提交
32 33 34 35

@register
@serializable
class COCODataSet(DetDataset):
F
Feng Ni 已提交
36 37 38 39 40 41 42 43 44
    """
    Load dataset with COCO format.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): coco annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
45 46 47 48 49
        load_crowd (bool): whether to load crowded ground-truth. 
            False as default
        allow_empty (bool): whether to load empty entry. False as default
        empty_ratio (float): the ratio of empty record number to total 
            record's, if empty_ratio is out of [0. ,1.), do not sample the 
50
            records and use all the empty entries. 1. as default
51
        repeat (int): repeat times for dataset, use in benchmark.
F
Feng Ni 已提交
52 53
    """

Q
qingqing01 已提交
54 55 56 57 58
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
59 60
                 sample_num=-1,
                 load_crowd=False,
61
                 allow_empty=False,
62 63 64 65 66 67 68 69 70
                 empty_ratio=1.,
                 repeat=1):
        super(COCODataSet, self).__init__(
            dataset_dir,
            image_dir,
            anno_path,
            data_fields,
            sample_num,
            repeat=repeat)
Q
qingqing01 已提交
71 72
        self.load_image_only = False
        self.load_semantic = False
73 74 75 76 77 78 79 80 81
        self.load_crowd = load_crowd
        self.allow_empty = allow_empty
        self.empty_ratio = empty_ratio

    def _sample_empty(self, records, num):
        # if empty_ratio is out of [0. ,1.), do not sample the records
        if self.empty_ratio < 0. or self.empty_ratio >= 1.:
            return records
        import random
82 83
        sample_num = min(
            int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
84 85
        records = random.sample(records, sample_num)
        return records
Q
qingqing01 已提交
86

87
    def parse_dataset(self):
Q
qingqing01 已提交
88 89 90 91 92 93 94 95
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
96
        img_ids.sort()
Q
qingqing01 已提交
97 98
        cat_ids = coco.getCatIds()
        records = []
99
        empty_records = []
Q
qingqing01 已提交
100 101
        ct = 0

K
Kaipeng Deng 已提交
102 103
        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
Q
qingqing01 已提交
104
            coco.loadCats(catid)[0]['name']: clsid
K
Kaipeng Deng 已提交
105
            for catid, clsid in self.catid2clsid.items()
Q
qingqing01 已提交
106 107 108 109 110 111 112 113
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
114
            img_anno = coco.loadImgs([img_id])[0]
Q
qingqing01 已提交
115 116 117 118 119 120
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
121
            is_empty = False
Q
qingqing01 已提交
122 123 124 125 126 127 128 129 130 131 132
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

133 134 135 136 137 138 139
            coco_rec = {
                'im_file': im_path,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            } if 'image' in self.data_fields else {}

Q
qingqing01 已提交
140
            if not self.load_image_only:
141 142
                ins_anno_ids = coco.getAnnIds(
                    imgIds=[img_id], iscrowd=None if self.load_crowd else False)
Q
qingqing01 已提交
143 144 145
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
146
                is_rbox_anno = False
Q
qingqing01 已提交
147 148
                for inst in instances:
                    # check gt bbox
149 150
                    if inst.get('ignore', False):
                        continue
Q
qingqing01 已提交
151 152 153 154 155
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue
C
cnn 已提交
156

W
wangxinxin08 已提交
157 158 159
                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
160 161 162 163 164
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
Q
qingqing01 已提交
165 166 167 168 169 170 171 172
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
173
                if num_bbox <= 0 and not self.allow_empty:
Q
qingqing01 已提交
174
                    continue
175 176
                elif num_bbox <= 0:
                    is_empty = True
Q
qingqing01 已提交
177 178 179 180 181

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox
182
                gt_track_id = -np.ones((num_bbox, 1), dtype=np.int32)
Q
qingqing01 已提交
183 184

                has_segmentation = False
185
                has_track_id = False
Q
qingqing01 已提交
186 187
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
K
Kaipeng Deng 已提交
188
                    gt_class[i][0] = self.catid2clsid[catid]
Q
qingqing01 已提交
189 190 191 192
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
W
wangxinxin08 已提交
193
                        gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
194
                    elif 'segmentation' in box and box['segmentation']:
W
wangguanzhong 已提交
195 196 197
                        if not np.array(
                                box['segmentation'],
                                dtype=object).size > 0 and not self.allow_empty:
198 199 200 201 202 203 204
                            bboxes.pop(i)
                            gt_poly.pop(i)
                            np.delete(is_crowd, i)
                            np.delete(gt_class, i)
                            np.delete(gt_bbox, i)
                        else:
                            gt_poly[i] = box['segmentation']
Q
qingqing01 已提交
205 206
                        has_segmentation = True

207 208 209 210
                    if 'track_id' in box:
                        gt_track_id[i][0] = box['track_id']
                        has_track_id = True

211 212
                if has_segmentation and not any(
                        gt_poly) and not self.allow_empty:
Q
qingqing01 已提交
213 214
                    continue

W
wangxinxin08 已提交
215 216 217 218 219 220
                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }
221 222
                if has_track_id:
                    gt_rec.update({'gt_track_id': gt_track_id})
C
cnn 已提交
223

Q
qingqing01 已提交
224 225 226 227 228 229 230 231 232 233 234 235
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
236 237 238 239
            if is_empty:
                empty_records.append(coco_rec)
            else:
                records.append(coco_rec)
Q
qingqing01 已提交
240 241 242
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
243
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
244 245
        logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
                    format(ct, len(img_ids) - ct, anno_path))
246
        if self.allow_empty and len(empty_records) > 0:
247 248
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
K
Kaipeng Deng 已提交
249
        self.roidbs = records
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372


@register
@serializable
class SlicedCOCODataSet(COCODataSet):
    """Sliced COCODataSet"""

    def __init__(
            self,
            dataset_dir=None,
            image_dir=None,
            anno_path=None,
            data_fields=['image'],
            sample_num=-1,
            load_crowd=False,
            allow_empty=False,
            empty_ratio=1.,
            repeat=1,
            sliced_size=[640, 640],
            overlap_ratio=[0.25, 0.25], ):
        super(SlicedCOCODataSet, self).__init__(
            dataset_dir=dataset_dir,
            image_dir=image_dir,
            anno_path=anno_path,
            data_fields=data_fields,
            sample_num=sample_num,
            load_crowd=load_crowd,
            allow_empty=allow_empty,
            empty_ratio=empty_ratio,
            repeat=repeat, )
        self.sliced_size = sliced_size
        self.overlap_ratio = overlap_ratio

    def parse_dataset(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        img_ids.sort()
        cat_ids = coco.getCatIds()
        records = []
        empty_records = []
        ct = 0
        ct_sub = 0

        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in self.catid2clsid.items()
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e

        sub_img_ids = 0
        for img_id in img_ids:
            img_anno = coco.loadImgs([img_id])[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            is_empty = False
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            slice_image_result = sahi.slicing.slice_image(
                image=im_path,
                slice_height=self.sliced_size[0],
                slice_width=self.sliced_size[1],
                overlap_height_ratio=self.overlap_ratio[0],
                overlap_width_ratio=self.overlap_ratio[1])

            sub_img_num = len(slice_image_result)
            for _ind in range(sub_img_num):
                im = slice_image_result.images[_ind]
                coco_rec = {
                    'image': im,
                    'im_id': np.array([sub_img_ids + _ind]),
                    'h': im.shape[0],
                    'w': im.shape[1],
                    'ori_im_id': np.array([img_id]),
                    'st_pix': np.array(
                        slice_image_result.starting_pixels[_ind],
                        dtype=np.float32),
                    'is_last': 1 if _ind == sub_img_num - 1 else 0,
                } if 'image' in self.data_fields else {}
                records.append(coco_rec)
            ct_sub += sub_img_num
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
        logger.info('{} samples and slice to {} sub_samples in file {}'.format(
            ct, ct_sub, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs = records
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


@register
@serializable
class SemiCOCODataSet(COCODataSet):
    """Semi-COCODataSet used for supervised and unsupervised dataSet"""

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 load_crowd=False,
                 allow_empty=False,
                 empty_ratio=1.,
                 repeat=1,
                 supervised=True):
        super(SemiCOCODataSet, self).__init__(
            dataset_dir, image_dir, anno_path, data_fields, sample_num,
            load_crowd, allow_empty, empty_ratio, repeat)
        self.supervised = supervised
        self.length = -1  # defalut -1 means all

    def parse_dataset(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        img_ids.sort()
        cat_ids = coco.getCatIds()
        records = []
        empty_records = []
        ct = 0

        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in self.catid2clsid.items()
        })

        if 'annotations' not in coco.dataset or self.supervised == False:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
            img_anno = coco.loadImgs([img_id])[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            is_empty = False
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            coco_rec = {
                'im_file': im_path,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            } if 'image' in self.data_fields else {}

            if not self.load_image_only:
                ins_anno_ids = coco.getAnnIds(
                    imgIds=[img_id], iscrowd=None if self.load_crowd else False)
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
                is_rbox_anno = False
                for inst in instances:
                    # check gt bbox
                    if inst.get('ignore', False):
                        continue
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue

                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
                if num_bbox <= 0 and not self.allow_empty:
                    continue
                elif num_bbox <= 0:
                    is_empty = True

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
                    gt_class[i][0] = self.catid2clsid[catid]
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
                        gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
                    elif 'segmentation' in box and box['segmentation']:
                        if not np.array(box['segmentation']
                                        ).size > 0 and not self.allow_empty:
                            bboxes.pop(i)
                            gt_poly.pop(i)
                            np.delete(is_crowd, i)
                            np.delete(gt_class, i)
                            np.delete(gt_bbox, i)
                        else:
                            gt_poly[i] = box['segmentation']
                        has_segmentation = True

                if has_segmentation and not any(
                        gt_poly) and not self.allow_empty:
                    continue

                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }

                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
            if is_empty:
                empty_records.append(coco_rec)
            else:
                records.append(coco_rec)
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
        logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
                    format(ct, len(img_ids) - ct, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs = records

        if self.supervised:
            logger.info(f'Use {len(self.roidbs)} sup_samples data as LABELED')
        else:
            if self.length > 0:  # unsup length will be decide by sup length
                all_roidbs = self.roidbs.copy()
                selected_idxs = [
                    np.random.choice(len(all_roidbs))
                    for _ in range(self.length)
                ]
                self.roidbs = [all_roidbs[i] for i in selected_idxs]
            logger.info(
                f'Use {len(self.roidbs)} unsup_samples data as UNLABELED')

    def __getitem__(self, idx):
        n = len(self.roidbs)
        if self.repeat > 1:
            idx %= n
        # data batch
        roidb = copy.deepcopy(self.roidbs[idx])
        if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
            roidb = [roidb, ] + [
                copy.deepcopy(self.roidbs[np.random.randint(n)])
                for _ in range(4)
            ]
        if isinstance(roidb, Sequence):
            for r in roidb:
                r['curr_iter'] = self._curr_iter
        else:
            roidb['curr_iter'] = self._curr_iter
        self._curr_iter += 1

        return self.transform(roidb)
590 591 592 593 594 595 596


# for PaddleX
@register
@serializable
class COCODetDataset(COCODataSet):
    pass