coco.py 7.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class COCODataSet(DetDataset):
F
Feng Ni 已提交
27 28 29 30 31 32 33 34 35 36 37
    """
    Load dataset with COCO format.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): coco annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
    """

Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47 48
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1):
        super(COCODataSet, self).__init__(dataset_dir, image_dir, anno_path,
                                          data_fields, sample_num)
        self.load_image_only = False
        self.load_semantic = False

49
    def parse_dataset(self):
Q
qingqing01 已提交
50 51 52 53 54 55 56 57
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
58
        img_ids.sort()
Q
qingqing01 已提交
59 60 61 62
        cat_ids = coco.getCatIds()
        records = []
        ct = 0

K
Kaipeng Deng 已提交
63 64
        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
Q
qingqing01 已提交
65
            coco.loadCats(catid)[0]['name']: clsid
K
Kaipeng Deng 已提交
66
            for catid, clsid in self.catid2clsid.items()
Q
qingqing01 已提交
67 68 69 70 71 72 73 74
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
75
            img_anno = coco.loadImgs([img_id])[0]
Q
qingqing01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            if not self.load_image_only:
94
                ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
Q
qingqing01 已提交
95 96 97 98 99 100 101 102 103 104
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
                for inst in instances:
                    # check gt bbox
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue
105 106 107 108 109 110 111 112
                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
Q
qingqing01 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
                if num_bbox <= 0:
                    continue

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                difficult = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
K
Kaipeng Deng 已提交
133
                    gt_class[i][0] = self.catid2clsid[catid]
Q
qingqing01 已提交
134 135 136 137 138
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
                        gt_poly[i] = [[0.0, 0.0], ]
139
                    elif 'segmentation' in box and box['segmentation']:
Q
qingqing01 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                        gt_poly[i] = box['segmentation']
                        has_segmentation = True

                if has_segmentation and not any(gt_poly):
                    continue

                coco_rec = {
                    'im_file': im_path,
                    'im_id': np.array([img_id]),
                    'h': im_h,
                    'w': im_w,
                } if 'image' in self.data_fields else {}

                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
            records.append(coco_rec)
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert len(records) > 0, 'not found any coco record in %s' % (anno_path)
        logger.debug('{} samples in file {}'.format(ct, anno_path))
K
Kaipeng Deng 已提交
177
        self.roidbs = records