graph_pattern_detector.cc 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <array>
17 18 19 20
#include <string>
#include <vector>

#include "paddle/fluid/framework/ir/graph_helper.h"
21
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
22
#include "paddle/fluid/framework/ir/graph_traits.h"
23
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/string/pretty_log.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/string/printf.h"
28 29 30 31
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
32 33 34 35
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;

36 37
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
38
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
46
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
47 48 49 50
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
51
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
52 53 54 55 56 57
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

58
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
59
  auto *cur = nodes_.back().get();
60
  node_map_[name] = cur;
61 62 63
  return cur;
}

C
chengduo 已提交
64
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
65 66 67 68 69 70 71 72
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
73
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
74 75 76 77 78 79
  PADDLE_ENFORCE(a);
  PADDLE_ENFORCE(b);
  PADDLE_ENFORCE(a != b, "can't connect to the same nodes.");
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
80
void GraphPatternDetector::operator()(Graph *graph,
81
                                      GraphPatternDetector::handle_t handler) {
82 83 84 85
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

86 87 88
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
89
  ValidateByNodeRole(&subgraphs);
90

Y
Yan Chunwei 已提交
91
  if (subgraphs.empty()) return;
Y
Yan Chunwei 已提交
92
  PrettyLogEndl(Style::detail(), "---  detect %d subgraphs", subgraphs.size());
93
  int id = 0;
C
chengduo 已提交
94
  for (auto &g : subgraphs) {
M
minqiyang 已提交
95
    VLOG(3) << "optimizing #" << id++ << " subgraph";
96 97 98 99
    handler(g, graph);
  }
}

C
chengduo 已提交
100
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
101
  VLOG(3) << "mark pdnodes in graph";
102 103
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
104 105
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
106
      if (pdnode->Tell(&node)) {
M
minqiyang 已提交
107
        VLOG(4) << "pdnode " << pdnode->name() << " marked";
108 109 110 111
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
112
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
113
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
114
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
115
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
116
      // return false;
Y
Yan Chunwei 已提交
117 118
    }
  }
C
chengduo 已提交
119 120 121
  for (auto &item : pdnodes2nodes_) {
    for (auto &n : item.second) {
      GetMarkedNodes(const_cast<Graph *>(&graph)).insert(n);
Y
Yan Chunwei 已提交
122 123
    }
  }
M
minqiyang 已提交
124
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
125

126 127 128
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
129 130 131
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be droped.
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
132
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
133 134 135 136 137
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
138
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
139
            // Collect the inputs and outputs.
C
chengduo 已提交
140 141
            std::unordered_set<Node *> ios;
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
142 143 144 145
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
146
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
147
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
148
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
149 150 151 152
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
153
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

165
struct HitGroup {
C
chengduo 已提交
166
  std::unordered_map<PDNode *, Node *> roles;
167

C
chengduo 已提交
168
  bool Match(Node *node, PDNode *pat) {
169
    if (nodes_.count(node)) {
T
Tao Luo 已提交
170 171 172 173 174
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
175
    }
176 177
  }

C
chengduo 已提交
178
  void Register(Node *node, PDNode *pat) {
179 180 181 182 183
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
C
chengduo 已提交
184
  std::unordered_set<Node *> nodes_;
185 186 187
};

// Tell whether Node a links to b.
C
chengduo 已提交
188 189
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
190 191 192 193 194 195 196
    if (b == node) {
      return true;
    }
  }
  return false;
}

197 198
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
199
  // Init empty subgraphs.
200
  std::vector<GraphPatternDetector::subgraph_t> result;
201
  std::vector<HitGroup> init_groups;
202
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
203
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
204
                                               : pattern_.edges().front().first;
205
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
206
  for (auto *node : pdnodes2nodes_[first_pnode]) {
207 208 209 210 211 212 213 214 215 216
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
217
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
218
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
219
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
220 221
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
222 223
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
224
    cur_groups.clear();
225
    if (pre_groups.empty()) break;
226
    // source -> target
C
chengduo 已提交
227 228
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
229
        VLOG(8) << "check " << source->id() << " -- " << target->id();
230
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
231
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
232 233 234 235 236 237
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
238 239 240 241 242 243 244 245
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
246
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
247 248
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
249
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
250
      }
M
minqiyang 已提交
251
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
252
    }
253 254
  }

C
chengduo 已提交
255
  for (auto &group : bi_records[step % 2]) {
256
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
257
    for (auto &role : group.roles) {
258 259 260 261 262 263 264
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
265 266
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
267
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
268 269 270 271 272
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
273
  }
Y
Yan Chunwei 已提交
274
};
Y
Yan Chunwei 已提交
275

276 277
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
278
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
279
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
280
  if (subgraphs->empty()) return;
281
  std::vector<GraphPatternDetector::subgraph_t> result;
282 283

  std::unordered_set<size_t> set;
Y
Yan Chunwei 已提交
284
  std::hash<std::string> hasher;
C
chengduo 已提交
285
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
286 287
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
288
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
289 290 291
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
292
    }
Y
Yan Chunwei 已提交
293
    auto key = hasher(ss.str());
294 295 296 297 298 299 300 301
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

302
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
303
    std::vector<subgraph_t> *subgraphs) {
304
  std::vector<subgraph_t> result;
C
chengduo 已提交
305
  std::unordered_set<Node *> node_set;
306

C
chengduo 已提交
307
  for (const auto &subgraph : *subgraphs) {
308
    bool valid = true;
C
chengduo 已提交
309
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
310
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
311 312 313 314 315
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
316
      for (auto &item : subgraph) {
317 318 319 320 321 322 323 324
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

325 326 327 328 329
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
330 331
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
332 333 334 335 336
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
337
  for (const auto &edge : edges()) {
338 339 340 341
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
342 343
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
344 345 346 347 348
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
349
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
350
  // extend outlinks.
C
chengduo 已提交
351
  for (PDNode *x : others) {
352 353 354 355 356
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
357
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
358
  // extend outlinks.
C
chengduo 已提交
359
  for (PDNode *x : others) {
360 361 362 363 364
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
365 366
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
367 368
  return this;
}
C
chengduo 已提交
369 370 371

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
372 373 374 375
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
376 377 378 379 380 381 382 383

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
384 385
  return this;
}
C
chengduo 已提交
386 387

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
388
  assert_is_var();
C
chengduo 已提交
389
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
390 391
  return this;
}
C
chengduo 已提交
392 393

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
394
  assert_is_var();
C
chengduo 已提交
395
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
396 397
  return this;
}
C
chengduo 已提交
398 399 400

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
401 402
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
403 404
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
405 406 407
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
408 409 410 411 412
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
413 414 415

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
416
  assert_is_var();
C
chengduo 已提交
417 418
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
419 420 421
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
422 423 424 425 426
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
427 428

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
429
  assert_is_var();
C
chengduo 已提交
430 431
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
432 433 434 435 436 437 438 439 440
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
441 442

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
443
  assert_is_var();
C
chengduo 已提交
444 445
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
446 447 448 449 450 451 452 453 454
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
455 456

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
457
  assert_is_var();
C
chengduo 已提交
458 459
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
460 461 462 463 464 465 466 467
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
468 469 470

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
471 472 473 474
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
475
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
476
  assert_is_var();
C
chengduo 已提交
477 478
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
479 480 481 482 483 484 485 486
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
487 488 489

PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
490 491 492 493
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
494 495

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
496
  assert_is_op(op_type);
C
chengduo 已提交
497
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
498 499
  return this;
}
C
chengduo 已提交
500 501

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
502
  assert_is_op(op_type);
C
chengduo 已提交
503
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
504 505
  return this;
}
C
chengduo 已提交
506 507

PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
508 509 510 511
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
595 596 597 598 599 600
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
601 602

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
603 604 605 606 607
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Input(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
608 609

bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
610 611 612 613 614
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Output(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
615 616 617 618 619

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
620 621
  }

C
chengduo 已提交
622
  for (auto *node : graph->Nodes()) {
623 624
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
625
        it = const_cast<Node *>(node)->inputs.erase(it);
626
      } else {
627
        it++;
628
      }
629 630 631
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
632
        it = const_cast<Node *>(node)->outputs.erase(it);
633
      } else {
634
        it++;
635
      }
636 637 638
    }
  }
}
C
chengduo 已提交
639 640 641

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
642 643 644 645 646 647 648
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
                                     bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
                           ->assert_is_op_input("batch_norm", "Scale");
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Bias");
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Mean");
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("batch_norm", "Variance");

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("batch_norm");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("batch_norm", "MeanOut");

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "VarianceOut");

  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedMean");

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedVariance");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

C
chengduo 已提交
755 756
PDNode *patterns::ConvReLU::operator()(
    paddle::framework::ir::PDNode *conv_input) {
757 758
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
C
chengduo 已提交
759 760
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
761 762
  // Create variables
  // Filter
C
chengduo 已提交
763
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
764 765 766 767
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
C
chengduo 已提交
768
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
769 770 771 772
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("relu");
  // output
C
chengduo 已提交
773
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
774 775 776
                           ->AsOutput()
                           ->assert_is_op_output("relu");

777
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
778 779 780 781
  relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

T
tensor-tang 已提交
782 783 784 785
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
786 787 788 789
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
827
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
Y
Yan Chunwei 已提交
828 829 830
                                 bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
831
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
832

C
chengduo 已提交
833
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
834 835 836 837
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
838
  auto *mul_out_var =
Y
Yan Chunwei 已提交
839 840 841 842 843 844 845 846 847 848
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

  if (!with_bias) {  // not with bias
    // Add links.
    mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
    return mul_out_var;

  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
849
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
850 851
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
852
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
853 854 855
                     ->assert_is_op_input("elementwise_add")
                     ->AsInput();

C
chengduo 已提交
856
    auto *fc_out = pattern->NewNode(Out_repr())
Y
Yan Chunwei 已提交
857 858 859 860 861 862
                       ->AsOutput()
                       ->assert_is_op_output("elementwise_add");

    mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var});
    elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
    return fc_out;
863 864
  }
}
T
tensor-tang 已提交
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
884
PDNode *patterns::LSTM::operator()(PDNode *x) {
885
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
886
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
887
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
888
  auto *arg__ =               \
Y
Yan Chunwei 已提交
889
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
890 891 892 893 894

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
895 896
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
897

Y
Yan Chunwei 已提交
898 899 900 901 902
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
903 904 905 906 907

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
908

C
chengduo 已提交
909
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
910
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
911
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
912
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
913
  auto *arg__ =               \
Y
Yan Chunwei 已提交
914
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
915

Y
Yan Chunwei 已提交
916
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
917 918
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
919
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
920 921
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
922
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
923
  // below are intermediate
Y
Yan Chunwei 已提交
924 925 926 927
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
928

T
tensor-tang 已提交
929 930 931 932
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
933 934 935 936 937
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

M
Michal Gallus 已提交
1032
PDNode *patterns::ConvBias::operator()(
1033
    paddle::framework::ir::PDNode *conv_input, bool is_conv3d) {
Y
Yihua Xu 已提交
1034
  std::string type = is_conv3d ? "conv3d" : "conv2d";
M
Michal Gallus 已提交
1035
  // Create Operators
Y
Yihua Xu 已提交
1036 1037
  conv_input->assert_is_op_input(type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(type);
M
Michal Gallus 已提交
1038 1039 1040 1041
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1042 1043 1044 1045
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(type, "Filter");
M
Michal Gallus 已提交
1046
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1047 1048 1049 1050
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(type)
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1051 1052 1053
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1054
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1066 1067 1068 1069
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1070
                       ->AsInput()
1071 1072 1073
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1074
                        ->AsInput()
1075 1076 1077
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1078
                        ->AsOutput()
1079 1080
                        ->assert_is_op_output("conv2d", "Output");

1081
  conv_op->LinksFrom({input_var, filter_var});
1082 1083 1084 1085 1086
  conv_op->LinksTo({output_var});

  return output_var;
}

1087
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
1088 1089 1090
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1091 1092
  x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
  y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
1093 1094 1095 1096
  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1097
  elementwise_add_op->LinksFrom({x_var, y_var});
1098 1099 1100 1101
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1102 1103 1104
}  // namespace ir
}  // namespace framework
}  // namespace paddle