distill.py 14.9 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import numpy as np
from collections import OrderedDict
from paddleslim.dist.single_distiller import merge, l2_loss

from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
from ppdet.utils.eval_utils import parse_fetches, eval_results, eval_run
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


B
Bai Yifan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def l2_distill(pairs, weight):
    """
    Add l2 distillation losses composed of multi pairs of feature maps,
    each pair of feature maps is the input of teacher and student's
    yolov3_loss respectively
    """
    loss = []
    for pair in pairs:
        loss.append(l2_loss(pair[0], pair[1]))
    loss = fluid.layers.sum(loss)
    weighted_loss = loss * weight
    return weighted_loss


def split_distill(split_output_names, weight):
    """
    Add fine grained distillation losses.
    Each loss is composed by distill_reg_loss, distill_cls_loss and
    distill_obj_loss
    """
    student_var = []
    for name in split_output_names:
        student_var.append(fluid.default_main_program().global_block().var(
            name))
    s_x0, s_y0, s_w0, s_h0, s_obj0, s_cls0 = student_var[0:6]
    s_x1, s_y1, s_w1, s_h1, s_obj1, s_cls1 = student_var[6:12]
    s_x2, s_y2, s_w2, s_h2, s_obj2, s_cls2 = student_var[12:18]
    teacher_var = []
    for name in split_output_names:
        teacher_var.append(fluid.default_main_program().global_block().var(
            'teacher_' + name))
    t_x0, t_y0, t_w0, t_h0, t_obj0, t_cls0 = teacher_var[0:6]
    t_x1, t_y1, t_w1, t_h1, t_obj1, t_cls1 = teacher_var[6:12]
    t_x2, t_y2, t_w2, t_h2, t_obj2, t_cls2 = teacher_var[12:18]

    def obj_weighted_reg(sx, sy, sw, sh, tx, ty, tw, th, tobj):
        loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
            sx, fluid.layers.sigmoid(tx))
        loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
            sy, fluid.layers.sigmoid(ty))
        loss_w = fluid.layers.abs(sw - tw)
        loss_h = fluid.layers.abs(sh - th)
        loss = fluid.layers.sum([loss_x, loss_y, loss_w, loss_h])
        weighted_loss = fluid.layers.reduce_mean(loss *
                                                 fluid.layers.sigmoid(tobj))
        return weighted_loss

    def obj_weighted_cls(scls, tcls, tobj):
        loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            scls, fluid.layers.sigmoid(tcls))
        weighted_loss = fluid.layers.reduce_mean(
            fluid.layers.elementwise_mul(
                loss, fluid.layers.sigmoid(tobj), axis=0))
        return weighted_loss

    def obj_loss(sobj, tobj):
        obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True
        loss = fluid.layers.reduce_mean(
            fluid.layers.sigmoid_cross_entropy_with_logits(sobj, obj_mask))
        return loss

    distill_reg_loss0 = obj_weighted_reg(s_x0, s_y0, s_w0, s_h0, t_x0, t_y0,
                                         t_w0, t_h0, t_obj0)
    distill_reg_loss1 = obj_weighted_reg(s_x1, s_y1, s_w1, s_h1, t_x1, t_y1,
                                         t_w1, t_h1, t_obj1)
    distill_reg_loss2 = obj_weighted_reg(s_x2, s_y2, s_w2, s_h2, t_x2, t_y2,
                                         t_w2, t_h2, t_obj2)
    distill_reg_loss = fluid.layers.sum(
        [distill_reg_loss0, distill_reg_loss1, distill_reg_loss2])

    distill_cls_loss0 = obj_weighted_cls(s_cls0, t_cls0, t_obj0)
    distill_cls_loss1 = obj_weighted_cls(s_cls1, t_cls1, t_obj1)
    distill_cls_loss2 = obj_weighted_cls(s_cls2, t_cls2, t_obj2)
    distill_cls_loss = fluid.layers.sum(
        [distill_cls_loss0, distill_cls_loss1, distill_cls_loss2])

    distill_obj_loss0 = obj_loss(s_obj0, t_obj0)
    distill_obj_loss1 = obj_loss(s_obj1, t_obj1)
    distill_obj_loss2 = obj_loss(s_obj2, t_obj2)
    distill_obj_loss = fluid.layers.sum(
        [distill_obj_loss0, distill_obj_loss1, distill_obj_loss2])
    loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss) * weight
    return loss


B
Bai Yifan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def main():
    env = os.environ
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    inputs_def = cfg['TrainReader']['inputs_def']
    train_feed_vars, train_loader = model.build_inputs(**inputs_def)
    train_fetches = model.train(train_feed_vars)
    loss = train_fetches['loss']
B
Bai Yifan 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []
    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe,
                                   fluid.default_main_program(),
                                   FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn and not ignore_params:
        checkpoint.load_and_fusebn(exe,
                                   fluid.default_main_program(),
                                   cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_params(
            exe,
            fluid.default_main_program(),
            cfg.pretrain_weights,
            ignore_params=ignore_params)

    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    train_loader.set_sample_list_generator(train_reader, place)

B
Bai Yifan 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    # get all student variables
    student_vars = []
    for v in fluid.default_main_program().list_vars():
        try:
            student_vars.append((v.name, v.shape))
        except:
            pass
    # uncomment the following lines to print all student variables
    # print("="*50 + "student_model_vars" + "="*50)
    # print(student_vars)

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, fluid.default_startup_program()):
        with fluid.unique_name.guard():
            model = create(main_arch)
            inputs_def = cfg['EvalReader']['inputs_def']
            test_feed_vars, eval_loader = model.build_inputs(**inputs_def)
            fetches = model.eval(test_feed_vars)
    eval_prog = eval_prog.clone(True)

    eval_reader = create_reader(cfg.EvalReader)
    eval_loader.set_sample_list_generator(eval_reader, place)

    # parse eval fetches
    extra_keys = []
    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
        extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
    eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                     extra_keys)

    teacher_cfg = load_config(FLAGS.teacher_config)
B
Bai Yifan 已提交
216
    merge_config(FLAGS.opt)
B
Bai Yifan 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    teacher_arch = teacher_cfg.architecture
    teacher_program = fluid.Program()
    teacher_startup_program = fluid.Program()

    with fluid.program_guard(teacher_program, teacher_startup_program):
        with fluid.unique_name.guard():
            teacher_feed_vars = OrderedDict()
            for name, var in train_feed_vars.items():
                teacher_feed_vars[name] = teacher_program.global_block(
                )._clone_variable(
                    var, force_persistable=False)
            model = create(teacher_arch)
            train_fetches = model.train(teacher_feed_vars)
            teacher_loss = train_fetches['loss']

    # get all teacher variables
    teacher_vars = []
    for v in teacher_program.list_vars():
        try:
            teacher_vars.append((v.name, v.shape))
        except:
            pass
    # uncomment the following lines to print all teacher variables
    # print("="*50 + "teacher_model_vars" + "="*50)
    # print(teacher_vars)

    exe.run(teacher_startup_program)
    assert FLAGS.teacher_pretrained, "teacher_pretrained should be set"
    checkpoint.load_params(exe, teacher_program, FLAGS.teacher_pretrained)
    teacher_program = teacher_program.clone(for_test=True)

    cfg = load_config(FLAGS.config)
    data_name_map = {
B
Bai Yifan 已提交
250 251 252
        'target0': 'target0',
        'target1': 'target1',
        'target2': 'target2',
B
Bai Yifan 已提交
253 254 255 256 257
        'image': 'image',
        'gt_bbox': 'gt_bbox',
        'gt_class': 'gt_class',
        'gt_score': 'gt_score'
    }
B
Bai Yifan 已提交
258 259 260 261 262 263 264 265 266 267 268 269
    merge(teacher_program, fluid.default_main_program(), data_name_map, place)

    yolo_output_names = [
        'strided_slice_0.tmp_0', 'strided_slice_1.tmp_0',
        'strided_slice_2.tmp_0', 'strided_slice_3.tmp_0',
        'strided_slice_4.tmp_0', 'transpose_0.tmp_0', 'strided_slice_5.tmp_0',
        'strided_slice_6.tmp_0', 'strided_slice_7.tmp_0',
        'strided_slice_8.tmp_0', 'strided_slice_9.tmp_0', 'transpose_2.tmp_0',
        'strided_slice_10.tmp_0', 'strided_slice_11.tmp_0',
        'strided_slice_12.tmp_0', 'strided_slice_13.tmp_0',
        'strided_slice_14.tmp_0', 'transpose_4.tmp_0'
    ]
B
Bai Yifan 已提交
270 271 272 273 274

    distill_pairs = [['teacher_conv2d_6.tmp_1', 'conv2d_20.tmp_1'],
                     ['teacher_conv2d_14.tmp_1', 'conv2d_28.tmp_1'],
                     ['teacher_conv2d_22.tmp_1', 'conv2d_36.tmp_1']]

B
Bai Yifan 已提交
275 276 277
    distill_loss = l2_distill(
        distill_pairs, 100) if not cfg.use_fine_grained_loss else split_distill(
            yolo_output_names, 1000)
B
Bai Yifan 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    loss = distill_loss + loss
    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')
    lr = lr_builder()
    opt = optim_builder(lr)
    opt.minimize(loss)

    exe.run(fluid.default_startup_program())

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1

B
Bai Yifan 已提交
302 303
    parallel_main = fluid.CompiledProgram(fluid.default_main_program(
    )).with_data_parallel(
B
Bai Yifan 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()
    map_type = cfg.map_type if 'map_type' in cfg else '11point'
    best_box_ap_list = [0.0, 0]  #[map, iter]
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)

    train_loader.start()
    for step_id in range(start_iter, cfg.max_iters):
        teacher_loss_np, distill_loss_np, loss_np, lr_np = exe.run(
            parallel_main,
            fetch_list=[
                'teacher_' + teacher_loss.name, distill_loss.name, loss.name,
                lr.name
            ])
        if step_id % cfg.log_iter == 0:
            logger.info(
                "step {} lr {:.6f}, loss {:.6f}, distill_loss {:.6f}, teacher_loss {:.6f}".
                format(step_id, lr_np[0], loss_np[0], distill_loss_np[0],
                       teacher_loss_np[0]))
        if step_id % cfg.snapshot_iter == 0 and step_id != 0 or step_id == cfg.max_iters - 1:
            save_name = str(
                step_id) if step_id != cfg.max_iters - 1 else "model_final"
B
Bai Yifan 已提交
336 337
            checkpoint.save(exe,
                            fluid.default_main_program(),
B
Bai Yifan 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
                            os.path.join(save_dir, save_name))
            # eval
            results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
                               eval_values, eval_cls)
            resolution = None
            box_ap_stats = eval_results(results, cfg.metric, cfg.num_classes,
                                        resolution, is_bbox_normalized,
                                        FLAGS.output_eval, map_type,
                                        cfg['EvalReader']['dataset'])

            if box_ap_stats[0] > best_box_ap_list[0]:
                best_box_ap_list[0] = box_ap_stats[0]
                best_box_ap_list[1] = step_id
B
Bai Yifan 已提交
351 352
                checkpoint.save(exe,
                                fluid.default_main_program(),
B
Bai Yifan 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                                os.path.join("./", "best_model"))
            logger.info("Best test box ap: {}, in step: {}".format(
                best_box_ap_list[0], best_box_ap_list[1]))
    train_loader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "-t",
        "--teacher_config",
        default=None,
        type=str,
        help="Config file of teacher architecture.")
    parser.add_argument(
        "--teacher_pretrained",
        default=None,
        type=str,
        help="Whether to use pretrained model.")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    FLAGS = parser.parse_args()
    main()