faster_rcnn.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
from collections import OrderedDict
20
import copy
21

22 23
from paddle import fluid

24
from ppdet.experimental import mixed_precision_global_state
25 26
from ppdet.core.workspace import register

27 28
from .input_helper import multiscale_def

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
__all__ = ['FasterRCNN']


@register
class FasterRCNN(object):
    """
    Faster R-CNN architecture, see https://arxiv.org/abs/1506.01497
    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor,
                 bbox_head='BBoxHead',
                 bbox_assigner='BBoxAssigner',
57
                 rpn_only=False,
58 59 60 61 62 63 64 65
                 fpn=None):
        super(FasterRCNN, self).__init__()
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.fpn = fpn
66
        self.rpn_only = rpn_only
67 68

    def build(self, feed_vars, mode='train'):
W
wangguanzhong 已提交
69
        if mode == 'train':
70
            required_fields = ['gt_class', 'gt_bbox', 'is_crowd', 'im_info']
W
wangguanzhong 已提交
71 72 73 74
        else:
            required_fields = ['im_shape', 'im_info']
        self._input_check(required_fields, feed_vars)

75 76 77
        im = feed_vars['image']
        im_info = feed_vars['im_info']
        if mode == 'train':
78
            gt_bbox = feed_vars['gt_bbox']
79 80
            is_crowd = feed_vars['is_crowd']
        else:
81
            im_shape = feed_vars['im_shape']
82 83 84 85 86 87 88

        mixed_precision_enabled = mixed_precision_global_state() is not None

        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

89 90 91
        body_feats = self.backbone(im)
        body_feat_names = list(body_feats.keys())

92 93 94 95 96
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

97 98 99 100 101 102
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
103
            rpn_loss = self.rpn_head.get_loss(im_info, gt_bbox, is_crowd)
104
            # sampled rpn proposals
105
            for var in ['gt_class', 'is_crowd', 'gt_bbox', 'im_info']:
106 107 108
                assert var in feed_vars, "{} has no {}".format(feed_vars, var)
            outs = self.bbox_assigner(
                rpn_rois=rois,
109
                gt_classes=feed_vars['gt_class'],
110
                is_crowd=feed_vars['is_crowd'],
111
                gt_boxes=feed_vars['gt_bbox'],
112 113 114 115 116 117 118
                im_info=feed_vars['im_info'])

            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
119 120
        else:
            if self.rpn_only:
121 122
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
123 124 125
                im_scale = fluid.layers.sequence_expand(im_scale, rois)
                rois = rois / im_scale
                return {'proposal': rois}
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        if self.fpn is None:
            # in models without FPN, roi extractor only uses the last level of
            # feature maps. And body_feat_names[-1] represents the name of
            # last feature map.
            body_feat = body_feats[body_feat_names[-1]]
            roi_feat = self.roi_extractor(body_feat, rois)
        else:
            roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

        if mode == 'train':
            loss = self.bbox_head.get_loss(roi_feat, labels_int32, bbox_targets,
                                           bbox_inside_weights,
                                           bbox_outside_weights)
            loss.update(rpn_loss)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
                                                 im_shape)
            return pred

W
wangguanzhong 已提交
148 149 150
    def build_multi_scale(self, feed_vars):
        required_fields = ['image', 'im_info', 'im_shape']
        self._input_check(required_fields, feed_vars)
151

W
wangguanzhong 已提交
152
        result = {}
153 154 155 156 157
        im_shape = feed_vars['im_shape']
        result['im_shape'] = im_shape
        for i in range(len(self.im_info_names) // 2):
            im = feed_vars[self.im_info_names[2 * i]]
            im_info = feed_vars[self.im_info_names[2 * i + 1]]
W
wangguanzhong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            body_feats = self.backbone(im)
            body_feat_names = list(body_feats.keys())

            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)

            rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')

            if self.fpn is None:
                # in models without FPN, roi extractor only uses the last level of
                # feature maps. And body_feat_names[-1] represents the name of
                # last feature map.
                body_feat = body_feats[body_feat_names[-1]]
                roi_feat = self.roi_extractor(body_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            pred = self.bbox_head.get_prediction(
                roi_feat, rois, im_info, im_shape, return_box_score=True)
            bbox_name = 'bbox_' + str(i)
            score_name = 'score_' + str(i)
            if 'flip' in im.name:
                bbox_name += '_flip'
                score_name += '_flip'
            result[bbox_name] = pred['bbox']
            result[score_name] = pred['score']
        return result

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)

191 192 193 194 195 196
    def _inputs_def(self, image_shape):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
            'im_info':  {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
Q
qingqing01 已提交
197
            'im_id':    {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
            'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
            'gt_bbox':  {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_crowd': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
        }
        # yapf: enable
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=[
                'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd'
            ],  # for train
            multi_scale=False,
            num_scales=-1,
            use_flip=None,
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape)
        fields = copy.deepcopy(fields)
        if multi_scale:
            ms_def, ms_fields = multiscale_def(image_shape, num_scales,
                                               use_flip)
            inputs_def.update(ms_def)
            fields += ms_fields
            self.im_info_names = ['image', 'im_info'] + ms_fields

Y
Yang Zhang 已提交
227
        feed_vars = OrderedDict([(key, fluid.data(
228 229 230 231 232 233 234 235 236 237 238
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=64,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

239 240 241
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

W
wangguanzhong 已提交
242 243 244
    def eval(self, feed_vars, multi_scale=None):
        if multi_scale:
            return self.build_multi_scale(feed_vars)
245 246 247 248
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')