ContextProjectionOp.cpp 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19 20
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {

X
xutianbing 已提交
21 22 23 24
/**
 * Context Projection Forward with CPU Matrix Device.
 *
 */
25
template <>
26 27 28
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
                                               const CpuMatrix& input_mat,
                                               const CpuMatrix& weight_mat,
29
                                               const CpuIVector& seq_vec,
30 31
                                               size_t context_length,
                                               int context_start,
32
                                               size_t begin_pad) {
33 34 35 36 37 38 39 40 41 42 43
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
44 45 46 47 48
        MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
49 50 51 52 53 54 55
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
56 57 58 59 60 61 62
        MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat)
                  .subMatrix(begin_pad + context_start + j - pad_size,
                             pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
63 64 65 66 67
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
68 69 70 71
      MatrixPtr src =
          const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * input_mat.getWidth());
72 73 74 75 76
    }
  }
}

/**
X
xutianbing 已提交
77 78 79 80 81 82 83
 * Paddle Function for Context Projection Forward.
 * Calculate the value for the output layer with context projection.
 *
 * What is Context Projection?
 * For example, assumed input (x) has 4 words and the dimension of each word
 * representation is 2. If we use zero to pad instead of learned weight to pad,
 * and the context_lenth is 3, the output (y) is:
84
 *
X
xutianbing 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 * @code
 *  x = [a1, a2;
 *       b1, b2;
 *       c1, c2;
 *       d1, d2]
 *  y = [0,  0,  a1, a2, b1, b2;
 *       a1, a2, b1, b2, c1, c2;
 *       b1, b2, c1, c2, d1, d2;
 *       c1, c2, d1, d2, 0,  0]
 * @endcode
 *
 * \param outputs[0] output value.
 * \param inputs[0]  input value.
 * \param inputs[1]  input weight.
 * \param inputs[2]  input sequence.
100 101 102 103 104 105 106 107 108 109
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

110
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
111 112
    CHECK_EQ((size_t)3, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
113

114
    CHECK(outputs[0].data() && inputs[0].data() && inputs[2].data());
115 116 117 118
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
119
    /// dim of output = dim of input * context_length
120
    CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
121
    /// dim of input == dim of weight
122
    CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
123
    /// input and output has the same batch_size
124 125
    CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);

126
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
127 128 129 130 131 132 133 134 135
    auto out_mat = outputs[0].matrix<Device>();
    auto in_mat = inputs[0].matrix<Device>();
    auto w_mat = !inputs[1].data()
                     ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                     : inputs[1].matrix<Device>();
    auto seq_vec = inputs[2].vector<int, Device>();
    ContextProjectionForward<Device>(out_mat,
                                     in_mat,
                                     w_mat,
136
                                     seq_vec,
137 138
                                     context_length_,
                                     context_start_,
139
                                     begin_pad_);
140 141 142 143 144 145 146 147
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

X
xutianbing 已提交
148 149 150 151
/**
 * Context Projection Backward with CPU Matrix Device.
 *
 */
152
template <>
153 154
<<<<<<< HEAD
void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
155 156
                                                CpuMatrix& in_grad_mat,
                                                CpuMatrix& w_grad_mat,
157
                                                const CpuIVector& seq_vec,
158 159 160
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
161 162
                                                bool is_padding,
                                                size_t total_pad) {
163 164
  size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
                                 : w_grad_mat ? w_grad_mat.getWidth() : 0;
165 166 167 168 169 170 171 172 173 174 175 176
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
177 178
          MatrixPtr mat = out_grad_mat.subMatrix(starts[i], pad_size);
          MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
179 180 181 182 183 184 185 186 187 188
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
          MatrixPtr mat =
189 190
              out_grad_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
          MatrixPtr sub = w_grad_mat.subMatrix(
191 192 193 194 195 196 197 198
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
199 200
      MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
      MatrixPtr dst = out_grad_mat.subMatrix(dst_begin, dst_end - dst_begin);
201 202 203 204 205 206
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
X
xutianbing 已提交
207 208 209 210 211 212 213
 * Context Projection Backward Function.
 * Update the weight gradient and input layer gradient with backprop
 *
 * \param inputs[0]      input sequence.
 * \param inputs[1]      output grad.
 * \param inouts[0]      input grad.
 * \param inouts[1]      weight grad.
214 215 216 217 218 219 220 221 222
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
223
    total_pad_ = config.get<size_t>("total_pad");
224 225
  }

226
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
227 228
    CHECK_EQ((size_t)3, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
229

230
    CHECK(outputs[0].data() && inputs[2].data());
231 232 233 234
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
235 236

    /// dim of input == dim of weight
237
    CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
238
    /// input and output has the same batch_size
239
    CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
240
    /// dim of output = dim of input * context_length
241
    CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
242

243 244
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);

245
    auto out_grad_mat = outputs[0].matrix<Device>();
246
    auto in_grad_mat =
247 248 249 250 251 252 253 254 255
        !inputs[0].data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                          : inputs[0].matrix<Device>();
    auto w_grad_mat = !inputs[1].data()
                          ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                          : inputs[1].matrix<Device>();
    auto seq_vec = inputs[2].vector<int, Device>();
    ContextProjectionBackward<Device>(out_grad_mat,
                                      in_grad_mat,
                                      w_grad_mat,
256
                                      seq_vec,
257 258 259
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
260 261
                                      is_padding_,
                                      total_pad_);
262 263 264 265 266 267 268
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
269
  size_t total_pad_;
270 271
};

272
#if 0
273
/**
X
xutianbing 已提交
274 275 276
 * Context Projection Backward Data Function.
 * Update gradient of the input layer with backprop.
 *
277 278 279
 * \param inouts[0]    input grad.
 * \param inputs[0]    input sequence.
 * \param inputs[1]    output grad.
280 281 282 283 284 285 286 287 288 289 290 291
 */
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
292 293 294 295 296 297 298 299 300 301 302
    CHECK_EQ(2, inputs.size());
    CHECK_EQ(0, outputs.size());
    CHECK_EQ(1, inouts.size());

    CHECK(inouts[0].getData() && inputs[0].getData() && inputs[1].getData());
    CHECK_EQ(inputs[0].dims_.size(), 1);
    CHECK_EQ(inputs[1].dims_.size(), 2);
    CHECK_EQ(inouts[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_[1], inouts[0].dims_[1] * context_length_);
    /// input and output grad have the same batch_size
    CHECK_EQ(inouts[0].dims_[0], inputs[1].dims_[0]);
303

304
    typename SequenceT<Device>::type seq_vec(
305 306 307 308 309
        inputs[0].dims_[0], reinterpret_cast<int*>(inputs[0].getData()));
    const auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
    auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
310 311 312 313

    ContextProjectionBackwardData<Device>(out_grad_mat.get(),
                                          in_grad_mat.get(),
                                          seq_vec,
314 315 316 317 318 319 320 321 322 323
                                          context_length_,
                                          context_start_);
  }

private:
  size_t context_length_;
  int context_start_;
};

/**
X
xutianbing 已提交
324 325 326
 * Context Projection Backward Weight Function.
 * Update weight gradient with backprop.
 *
327 328 329
 * \param inouts[0]    weight grad.
 * \param inputs[0]    input sequence.
 * \param inputs[1]    output grad.
330 331 332 333 334 335 336 337 338 339 340 341 342 343
 */
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    total_pad_ = config.get<size_t>("total_pad");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
344 345 346 347 348 349 350 351 352 353
    CHECK_EQ(2, inputs.size());
    CHECK_EQ(0, outputs.size());
    CHECK_EQ(1, inouts.size());

    CHECK(inouts[0].getData() && inputs[0].getData() && inputs[1].getData());
    CHECK_EQ(inputs[0].dims_.size(), 1);
    CHECK_EQ(inputs[1].dims_.size(), 2);
    CHECK_EQ(inouts[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_[1], inouts[0].dims_[1] * context_length_);

354
    typename SequenceT<Device>::type seq_vec(
355 356 357 358 359
        inputs[0].dims_[0], reinterpret_cast<int*>(inputs[0].getData()));
    const auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
    auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
360 361 362 363

    ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
                                            w_grad_mat.get(),
                                            seq_vec,
364 365 366 367 368 369 370 371 372 373 374 375
                                            context_length_,
                                            context_start_,
                                            total_pad_,
                                            begin_pad_);
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  size_t total_pad_;
};
376
#endif
377

378 379 380
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
381 382 383
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
384 385 386 387
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
388 389 390
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
391
#if 0
392 393 394 395 396 397
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
                    GPU,
                    ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
                    GPU,
                    ContextProjectionBackwardWeightFunc);
398
#endif
399
#endif
400
}  // namespace paddle