提交 1482ec43 编写于 作者: X xutianbing

some comments.

上级 df66957e
......@@ -18,6 +18,10 @@ limitations under the License. */
namespace paddle {
/**
* Context Projection Forward with CPU Matrix Device.
*
*/
template <>
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
const CpuMatrix& input_mat,
......@@ -70,11 +74,29 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
}
/**
* \param outputs[0] output value.
* Paddle Function for Context Projection Forward.
* Calculate the value for the output layer with context projection.
*
* What is Context Projection?
* For example, assumed input (x) has 4 words and the dimension of each word
* representation is 2. If we use zero to pad instead of learned weight to pad,
* and the context_lenth is 3, the output (y) is:
*
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
* @code
* x = [a1, a2;
* b1, b2;
* c1, c2;
* d1, d2]
* y = [0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, d1, d2;
* c1, c2, d1, d2, 0, 0]
* @endcode
*
* \param outputs[0] output value.
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
*/
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
......@@ -123,6 +145,10 @@ private:
size_t begin_pad_;
};
/**
* Context Projection Backward with CPU Matrix Device.
*
*/
template <>
<<<<<<< HEAD
void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
......@@ -178,10 +204,13 @@ void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
}
/**
* \param inputs[0] input sequence.
* \param inputs[1] output grad.
* \param inouts[0] input grad.
* \param inouts[1] weight grad.
* Context Projection Backward Function.
* Update the weight gradient and input layer gradient with backprop
*
* \param inputs[0] input sequence.
* \param inputs[1] output grad.
* \param inouts[0] input grad.
* \param inouts[1] weight grad.
*/
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
......@@ -194,7 +223,6 @@ public:
total_pad_ = config.get<size_t>("total_pad");
}
<<<<<<< HEAD
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ((size_t)3, inputs.size());
CHECK_EQ((size_t)1, outputs.size());
......@@ -213,42 +241,6 @@ public:
CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
=======
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, inputs.size());
CHECK_EQ(0, outputs.size());
CHECK_EQ(2, inouts.size());
CHECK(inputs[0].getData() && inputs[1].getData());
CHECK_EQ(inputs[0].dims_.size(), 1);
CHECK_EQ(inputs[1].dims_.size(), 2);
CHECK_EQ(inouts[0].dims_.size(), 2);
CHECK_EQ(inouts[1].dims_.size(), 2);
/// dim of input grad == dim of weight grad
CHECK_EQ(inouts[0].dims_[1], inouts[1].dims_[1]);
/// input grad and output grad have the same batch_size
CHECK_EQ(inouts[0].dims_[0], inputs[1].dims_[0]);
/// dim of output = dim of input * context_length
CHECK_EQ(inputs[1].dims_[1], inouts[0].dims_[1] * context_length_);
typename SequenceT<Device>::type seq_vec(
inputs[0].dims_[0], reinterpret_cast<int*>(inputs[0].getData()));
const auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
auto in_grad_mat =
!inouts[0].getData()
? nullptr
: std::make_shared<typename MatrixT<Device>::type>(
inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
auto w_grad_mat =
!inouts[1].getData()
? nullptr
: std::make_shared<typename MatrixT<Device>::type>(
inouts[1].getData(), inouts[1].dims_[0], inouts[1].dims_[1]);
>>>>>>> Wei Xu's comments, set up right inouts.
auto out_grad_mat = outputs[0].matrix<Device>();
auto in_grad_mat =
......@@ -279,6 +271,9 @@ private:
#if 0
/**
* Context Projection Backward Data Function.
* Update gradient of the input layer with backprop.
*
* \param inouts[0] input grad.
* \param inputs[0] input sequence.
* \param inputs[1] output grad.
......@@ -326,6 +321,9 @@ private:
};
/**
* Context Projection Backward Weight Function.
* Update weight gradient with backprop.
*
* \param inouts[0] weight grad.
* \param inputs[0] input sequence.
* \param inputs[1] output grad.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册