cb_resnet.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import Constant

from ppdet.core.workspace import register, serializable
from numbers import Integral

from .name_adapter import NameAdapter
Y
Yang Zhang 已提交
31
from .nonlocal_helper import add_space_nonlocal
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

__all__ = ['CBResNet']


@register
@serializable
class CBResNet(object):
    """
    CBNet, see https://arxiv.org/abs/1909.03625
    Args:
        depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
        freeze_at (int): freeze the backbone at which stage
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
        feature_maps (list): index of stages whose feature maps are returned
        dcn_v2_stages (list): index of stages who select deformable conv v2
        nonlocal_stages (list): index of stages who select nonlocal networks
        repeat_num (int): number of repeat for backbone
    Attention:
        1. Here we set the ResNet as the base backbone.
        2. All the pretraned params are copied from corresponding names,
           but with different names to avoid name refliction.
    """

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='bn',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
                 feature_maps=[2, 3, 4, 5],
                 dcn_v2_stages=[],
67 68
                 nonlocal_stages=[],
                 repeat_num=2):
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        super(CBResNet, self).__init__()

        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

        assert depth in [18, 34, 50, 101, 152, 200], \
            "depth {} not in [18, 34, 50, 101, 152, 200]"
        assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
        assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
        assert len(feature_maps) > 0, "need one or more feature maps"
        assert norm_type in ['bn', 'sync_bn', 'affine_channel']
        assert not (len(nonlocal_stages)>0 and depth<50), \
                    "non-local is not supported for resnet18 or resnet34"

        self.depth = depth
        self.dcn_v2_stages = dcn_v2_stages
        self.freeze_at = freeze_at
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.variant = variant
        self._model_type = 'ResNet'
        self.feature_maps = feature_maps
        self.repeat_num = repeat_num
        self.curr_level = 0
        self.depth_cfg = {
            18: ([2, 2, 2, 2], self.basicblock),
            34: ([3, 4, 6, 3], self.basicblock),
            50: ([3, 4, 6, 3], self.bottleneck),
            101: ([3, 4, 23, 3], self.bottleneck),
            152: ([3, 8, 36, 3], self.bottleneck),
            200: ([3, 12, 48, 3], self.bottleneck),
        }
Y
Yang Zhang 已提交
102

103 104
        self.nonlocal_stages = nonlocal_stages
        self.nonlocal_mod_cfg = {
105 106 107 108
            50: 2,
            101: 5,
            152: 8,
            200: 12,
109
        }
Y
Yang Zhang 已提交
110

111 112 113
        self.stage_filters = [64, 128, 256, 512]
        self._c1_out_chan_num = 64
        self.na = NameAdapter(self)
Y
Yang Zhang 已提交
114

115 116 117 118 119 120 121
    def _conv_offset(self,
                     input,
                     filter_size,
                     stride,
                     padding,
                     act=None,
                     name=None):
122
        out_channel = filter_size * filter_size * 3
123 124
        out = fluid.layers.conv2d(
            input,
125 126 127 128 129 130 131 132 133 134 135
            num_filters=out_channel,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".w_0"),
            bias_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".b_0"),
            act=act,
            name=name)
        return out
Y
Yang Zhang 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def _conv_norm(self,
                   input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   act=None,
                   name=None,
                   dcn=False):
        if not dcn:
            conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                act=None,
155 156
                param_attr=ParamAttr(
                    name=name + "_weights_" + str(self.curr_level)),
157 158 159 160 161 162 163 164 165
                bias_attr=False)
        else:
            offset_mask = self._conv_offset(
                input=input,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                act=None,
                name=name + "_conv_offset_" + str(self.curr_level))
166 167
            offset_channel = filter_size**2 * 2
            mask_channel = filter_size**2
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
            offset, mask = fluid.layers.split(
                input=offset_mask,
                num_or_sections=[offset_channel, mask_channel],
                dim=1)
            mask = fluid.layers.sigmoid(mask)
            conv = fluid.layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                deformable_groups=1,
                im2col_step=1,
184 185
                param_attr=ParamAttr(
                    name=name + "_weights_" + str(self.curr_level)),
186 187 188 189 190 191 192
                bias_attr=False)

        bn_name = self.na.fix_conv_norm_name(name)

        norm_lr = 0. if self.freeze_norm else 1.
        norm_decay = self.norm_decay
        pattr = ParamAttr(
193
            name=bn_name + '_scale_' + str(self.curr_level),
194 195 196
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
197
            name=bn_name + '_offset_' + str(self.curr_level),
198 199 200 201 202 203 204 205
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        if self.norm_type in ['bn', 'sync_bn']:
            global_stats = True if self.freeze_norm else False
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
206
                name=bn_name + '.output.1_' + str(self.curr_level),
207 208
                param_attr=pattr,
                bias_attr=battr,
209 210 211
                moving_mean_name=bn_name + '_mean_' + str(self.curr_level),
                moving_variance_name=bn_name + '_variance_' +
                str(self.curr_level),
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
                use_global_stats=global_stats)
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            assert False, "deprecated!!!"
        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True
        return out

    def _shortcut(self, input, ch_out, stride, is_first, name):
        max_pooling_in_short_cut = self.variant == 'd'
        ch_in = input.shape[1]
        # the naming rule is same as pretrained weight
        name = self.na.fix_shortcut_name(name)
        if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
            if max_pooling_in_short_cut and not is_first:
                input = fluid.layers.pool2d(
                    input=input,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    ceil_mode=True,
                    pool_type='avg')
                return self._conv_norm(input, ch_out, 1, 1, name=name)
            return self._conv_norm(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck(self, input, num_filters, stride, is_first, name, dcn=False):
        if self.variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        # ResNeXt
        groups = getattr(self, 'groups', 1)
        group_width = getattr(self, 'group_width', -1)
        if groups == 1:
            expand = 4
        elif (groups * group_width) == 256:
            expand = 1
        else:  # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
            num_filters = num_filters // 2
            expand = 2

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = self.na.fix_bottleneck_name(name)
Y
Yang Zhang 已提交
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274
        conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
                    [num_filters, 3, stride2, 'relu', groups, conv_name2],
                    [num_filters * expand, 1, 1, None, 1, conv_name3]]

        residual = input
        for i, (c, k, s, act, g, _name) in enumerate(conv_def):
            residual = self._conv_norm(
                input=residual,
                num_filters=c,
                filter_size=k,
                stride=s,
                act=act,
                groups=g,
                name=_name,
275
                dcn=(i == 1 and dcn))
276 277 278 279 280 281 282 283 284 285
        short = self._shortcut(
            input,
            num_filters * expand,
            stride,
            is_first=is_first,
            name=shortcut_name)
        # Squeeze-and-Excitation
        if callable(getattr(self, '_squeeze_excitation', None)):
            residual = self._squeeze_excitation(
                input=residual, num_channels=num_filters, name='fc' + name)
286
        return fluid.layers.elementwise_add(x=short, y=residual, act='relu')
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    def basicblock(self, input, num_filters, stride, is_first, name, dcn=False):
        assert dcn is False, "Not implemented yet."
        conv0 = self._conv_norm(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self._conv_norm(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self._shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
        dcn = True if stage_num in self.dcn_v2_stages else False
Y
Yang Zhang 已提交
324

325 326
        nonlocal_mod = 1000
        if stage_num in self.nonlocal_stages:
327 328
            nonlocal_mod = self.nonlocal_mod_cfg[
                self.depth] if stage_num == 4 else 2
Y
Yang Zhang 已提交
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
            conv = block_func(
                input=conv,
                num_filters=ch_out,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
                name=conv_name,
                dcn=dcn)
Y
Yang Zhang 已提交
344

345 346
            # add non local model
            dim_in = conv.shape[1]
347 348
            nonlocal_name = "nonlocal_conv{}_lvl{}".format(stage_num,
                                                           self.curr_level)
349
            if i % nonlocal_mod == nonlocal_mod - 1:
350 351 352
                conv = add_space_nonlocal(conv, dim_in, dim_in,
                                          nonlocal_name + '_{}'.format(i),
                                          int(dim_in / 2))
Y
Yang Zhang 已提交
353

354 355 356 357 358 359 360 361
        return conv

    def c1_stage(self, input):
        out_chan = self._c1_out_chan_num

        conv1_name = self.na.fix_c1_stage_name()

        if self.variant in ['c', 'd']:
362 363 364
            conv1_1_name = "conv1_1"
            conv1_2_name = "conv1_2"
            conv1_3_name = "conv1_3"
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
            conv_def = [
                [out_chan // 2, 3, 2, conv1_1_name],
                [out_chan // 2, 3, 1, conv1_2_name],
                [out_chan, 3, 1, conv1_3_name],
            ]
        else:
            conv_def = [[out_chan, 7, 2, conv1_name]]

        for (c, k, s, _name) in conv_def:
            input = self._conv_norm(
                input=input,
                num_filters=c,
                filter_size=k,
                stride=s,
                act='relu',
                name=_name)

        output = fluid.layers.pool2d(
            input=input,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        return output
Y
Yang Zhang 已提交
389

390
    def connect(self, left, right, name):
391
        ch_right = right.shape[1]
392 393 394 395 396 397 398
        conv = self._conv_norm(
            left,
            num_filters=ch_right,
            filter_size=1,
            stride=1,
            act="relu",
            name=name + "_connect")
399 400 401 402 403 404 405
        shape = fluid.layers.shape(right)
        shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
        out_shape_ = shape_hw
        out_shape = fluid.layers.cast(out_shape_, dtype='int32')
        out_shape.stop_gradient = True
        conv = fluid.layers.resize_nearest(
            conv, scale=2., actual_shape=out_shape)
Y
Yang Zhang 已提交
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        output = fluid.layers.elementwise_add(x=right, y=conv)
        return output

    def __call__(self, input):
        assert isinstance(input, Variable)
        assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
            "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)

        res_endpoints = []

        self.curr_level = 0
        res = self.c1_stage(input)
        feature_maps = range(2, max(self.feature_maps) + 1)
        for i in feature_maps:
            res = self.layer_warp(res, i)
            if i in self.feature_maps:
                res_endpoints.append(res)
Y
Yang Zhang 已提交
424

425 426 427
        for num in range(1, self.repeat_num):
            self.curr_level = num
            res = self.c1_stage(input)
428 429 430
            for i in range(len(res_endpoints)):
                res = self.connect(res_endpoints[i], res, "test_c" + str(i + 1))
                res = self.layer_warp(res, i + 2)
431
                res_endpoints[i] = res
432
                if self.freeze_at >= i + 2:
433
                    res.stop_gradient = True
Y
Yang Zhang 已提交
434

435 436
        return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
                            for idx, feat in enumerate(res_endpoints)])