clrnet_loss.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.clrnet_utils import accuracy
from ppdet.modeling.assigners.clrnet_assigner import assign
from ppdet.modeling.losses.clrnet_line_iou_loss import liou_loss

__all__ = ['CLRNetLoss']


class SoftmaxFocalLoss(nn.Layer):
    def __init__(self, gamma, ignore_lb=255, *args, **kwargs):
        super(SoftmaxFocalLoss, self).__init__()
        self.gamma = gamma
        self.nll = nn.NLLLoss(ignore_index=ignore_lb)

    def forward(self, logits, labels):
        scores = F.softmax(logits, dim=1)
        factor = paddle.pow(1. - scores, self.gamma)
        log_score = F.log_softmax(logits, dim=1)
        log_score = factor * log_score
        loss = self.nll(log_score, labels)
        return loss


def focal_loss(input: paddle.Tensor,
               target: paddle.Tensor,
               alpha: float,
               gamma: float=2.0,
               reduction: str='none',
               eps: float=1e-8) -> paddle.Tensor:
    r"""Function that computes Focal loss.

    See :class:`~kornia.losses.FocalLoss` for details.
    """
    if not paddle.is_tensor(input):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(input)))

    if not len(input.shape) >= 2:
        raise ValueError("Invalid input shape, we expect BxCx*. Got: {}".format(
            input.shape))

    if input.shape[0] != target.shape[0]:
        raise ValueError(
            'Expected input batch_size ({}) to match target batch_size ({}).'.
            format(input.shape[0], target.shape[0]))

    n = input.shape[0]
    out_size = (n, ) + tuple(input.shape[2:])
    if target.shape[1:] != input.shape[2:]:
        raise ValueError('Expected target size {}, got {}'.format(out_size,
                                                                  target.shape))
    if (isinstance(input.place, paddle.CUDAPlace) and
            isinstance(target.place, paddle.CPUPlace)) | (isinstance(
                input.place, paddle.CPUPlace) and isinstance(target.place,
                                                             paddle.CUDAPlace)):
        raise ValueError(
            "input and target must be in the same device. Got: {} and {}".
            format(input.place, target.place))

    # compute softmax over the classes axis
    input_soft: paddle.Tensor = F.softmax(input, axis=1) + eps

    # create the labels one hot tensor
    target_one_hot: paddle.Tensor = paddle.to_tensor(
        F.one_hot(
            target, num_classes=input.shape[1]).cast(input.dtype),
        place=input.place)

    # compute the actual focal loss
    weight = paddle.pow(-input_soft + 1., gamma)

    focal = -alpha * weight * paddle.log(input_soft)
    loss_tmp = paddle.sum(target_one_hot * focal, axis=1)

    if reduction == 'none':
        loss = loss_tmp
    elif reduction == 'mean':
        loss = paddle.mean(loss_tmp)
    elif reduction == 'sum':
        loss = paddle.sum(loss_tmp)
    else:
        raise NotImplementedError("Invalid reduction mode: {}".format(
            reduction))
    return loss


class FocalLoss(nn.Layer):
    r"""Criterion that computes Focal loss.

    According to [1], the Focal loss is computed as follows:

    .. math::

        \text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)

    where:
       - :math:`p_t` is the model's estimated probability for each class.


    Arguments:
        alpha (float): Weighting factor :math:`\alpha \in [0, 1]`.
        gamma (float): Focusing parameter :math:`\gamma >= 0`.
        reduction (str, optional): Specifies the reduction to apply to the
         output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied,
         ‘mean’: the sum of the output will be divided by the number of elements
         in the output, ‘sum’: the output will be summed. Default: ‘none’.

    Shape:
        - Input: :math:`(N, C, *)` where C = number of classes.
        - Target: :math:`(N, *)` where each value is
          :math:`0 ≤ targets[i] ≤ C−1`.

    Examples:
        >>> N = 5  # num_classes
        >>> kwargs = {"alpha": 0.5, "gamma": 2.0, "reduction": 'mean'}
        >>> loss = kornia.losses.FocalLoss(**kwargs)
        >>> input = torch.randn(1, N, 3, 5, requires_grad=True)
        >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N)
        >>> output = loss(input, target)
        >>> output.backward()

    References:
        [1] https://arxiv.org/abs/1708.02002
    """

    def __init__(self, alpha: float, gamma: float=2.0,
                 reduction: str='none') -> None:
        super(FocalLoss, self).__init__()
        self.alpha: float = alpha
        self.gamma: float = gamma
        self.reduction: str = reduction
        self.eps: float = 1e-6

    def forward(  # type: ignore
            self, input: paddle.Tensor, target: paddle.Tensor) -> paddle.Tensor:
        return focal_loss(input, target, self.alpha, self.gamma, self.reduction,
                          self.eps)


@register
class CLRNetLoss(nn.Layer):
    __shared__ = ['img_w', 'img_h', 'num_classes', 'num_points']

    def __init__(self,
                 cls_loss_weight=2.0,
                 xyt_loss_weight=0.2,
                 iou_loss_weight=2.0,
                 seg_loss_weight=1.0,
                 refine_layers=3,
                 num_points=72,
                 img_w=800,
                 img_h=320,
                 num_classes=5,
                 ignore_label=255,
                 bg_weight=0.4):
        super(CLRNetLoss, self).__init__()
        self.cls_loss_weight = cls_loss_weight
        self.xyt_loss_weight = xyt_loss_weight
        self.iou_loss_weight = iou_loss_weight
        self.seg_loss_weight = seg_loss_weight
        self.refine_layers = refine_layers
        self.img_w = img_w
        self.img_h = img_h
        self.n_strips = num_points - 1
        self.num_classes = num_classes
        self.ignore_label = ignore_label
        weights = paddle.ones(shape=[self.num_classes])
        weights[0] = bg_weight
        self.criterion = nn.NLLLoss(
            ignore_index=self.ignore_label, weight=weights)

    def forward(self, output, batch):
        predictions_lists = output['predictions_lists']
        targets = batch['lane_line'].clone()
        cls_criterion = FocalLoss(alpha=0.25, gamma=2.0)
        cls_loss = paddle.to_tensor(0.0)
        reg_xytl_loss = paddle.to_tensor(0.0)
        iou_loss = paddle.to_tensor(0.0)
        cls_acc = []
        cls_acc_stage = []
        for stage in range(self.refine_layers):
            predictions_list = predictions_lists[stage]
            for predictions, target in zip(predictions_list, targets):
                target = target[target[:, 1] == 1]

                if len(target) == 0:
                    # If there are no targets, all predictions have to be negatives (i.e., 0 confidence)
                    cls_target = paddle.zeros(
                        [predictions.shape[0]], dtype='int64')
                    cls_pred = predictions[:, :2]
                    cls_loss = cls_loss + cls_criterion(cls_pred,
                                                        cls_target).sum()
                    continue

                with paddle.no_grad():
                    matched_row_inds, matched_col_inds = assign(
                        predictions, target, self.img_w, self.img_h)

                # classification targets
                cls_target = paddle.zeros([predictions.shape[0]], dtype='int64')
                cls_target[matched_row_inds] = 1
                cls_pred = predictions[:, :2]

                # regression targets -> [start_y, start_x, theta] (all transformed to absolute values), only on matched pairs
                reg_yxtl = predictions.index_select(matched_row_inds)[..., 2:6]

                reg_yxtl[:, 0] *= self.n_strips
                reg_yxtl[:, 1] *= (self.img_w - 1)
                reg_yxtl[:, 2] *= 180
                reg_yxtl[:, 3] *= self.n_strips

                target_yxtl = target.index_select(matched_col_inds)[..., 2:
                                                                    6].clone()

                # regression targets -> S coordinates (all transformed to absolute values)
                reg_pred = predictions.index_select(matched_row_inds)[..., 6:]
                reg_pred *= (self.img_w - 1)
                reg_targets = target.index_select(matched_col_inds)[...,
                                                                    6:].clone()

                with paddle.no_grad():
                    predictions_starts = paddle.clip(
                        (predictions.index_select(matched_row_inds)[..., 2] *
                         self.n_strips).round().cast("int64"),
                        min=0,
                        max=self.
                        n_strips)  # ensure the predictions starts is valid

                    target_starts = (
                        target.index_select(matched_col_inds)[..., 2] *
                        self.n_strips).round().cast("int64")
                    target_yxtl[:, -1] -= (
                        predictions_starts - target_starts)  # reg length

                # Loss calculation
                cls_loss = cls_loss + cls_criterion(
                    cls_pred, cls_target).sum() / target.shape[0]

                target_yxtl[:, 0] *= self.n_strips
                target_yxtl[:, 2] *= 180

                reg_xytl_loss = reg_xytl_loss + F.smooth_l1_loss(
                    input=reg_yxtl, label=target_yxtl, reduction='none').mean()

                iou_loss = iou_loss + liou_loss(
                    reg_pred, reg_targets, self.img_w, length=15)

                cls_accuracy = accuracy(cls_pred, cls_target)
                cls_acc_stage.append(cls_accuracy)

            cls_acc.append(sum(cls_acc_stage) / (len(cls_acc_stage) + 1e-5))

        # extra segmentation loss
        seg_loss = self.criterion(
            F.log_softmax(
                output['seg'], axis=1), batch['seg'].cast('int64'))

        cls_loss /= (len(targets) * self.refine_layers)
        reg_xytl_loss /= (len(targets) * self.refine_layers)
        iou_loss /= (len(targets) * self.refine_layers)

        loss = cls_loss * self.cls_loss_weight \
            + reg_xytl_loss * self.xyt_loss_weight \
            + seg_loss * self.seg_loss_weight \
            + iou_loss * self.iou_loss_weight

        return_value = {
            'loss': loss,
            'cls_loss': cls_loss * self.cls_loss_weight,
            'reg_xytl_loss': reg_xytl_loss * self.xyt_loss_weight,
            'seg_loss': seg_loss * self.seg_loss_weight,
            'iou_loss': iou_loss * self.iou_loss_weight
        }

        for i in range(self.refine_layers):
            if not isinstance(cls_acc[i], paddle.Tensor):
                cls_acc[i] = paddle.to_tensor(cls_acc[i])
            return_value['stage_{}_acc'.format(i)] = cls_acc[i]

        return return_value