clrnet_resnet.py 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn

from paddle.utils.download import get_weights_path_from_url
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec

__all__ = ['CLRResNet']

model_urls = {
    'resnet18':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet18-pt.pdparams',
    'resnet34':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet34-pt.pdparams',
    'resnet50':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet50-pt.pdparams',
    'resnet101':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet101-pt.pdparams',
    'resnet152':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet152-pt.pdparams',
    'resnext50_32x4d':
    'https://x2paddle.bj.bcebos.com/vision/models/resnext50_32x4d-pt.pdparams',
    'resnext101_32x8d':
    'https://x2paddle.bj.bcebos.com/vision/models/resnext101_32x8d-pt.pdparams',
    'wide_resnet50_2':
    'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet50_2-pt.pdparams',
    'wide_resnet101_2':
    'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet101_2-pt.pdparams',
}


class BasicBlock(nn.Layer):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D

        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")

        self.conv1 = nn.Conv2D(
            inplanes, planes, 3, padding=1, stride=stride, bias_attr=False)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class BottleneckBlock(nn.Layer):

    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BottleneckBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        width = int(planes * (base_width / 64.)) * groups

        self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False)
        self.bn1 = norm_layer(width)

        self.conv2 = nn.Conv2D(
            width,
            width,
            3,
            padding=dilation,
            stride=stride,
            groups=groups,
            dilation=dilation,
            bias_attr=False)
        self.bn2 = norm_layer(width)

        self.conv3 = nn.Conv2D(
            width, planes * self.expansion, 1, bias_attr=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Layer):
    """ResNet model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        Block (BasicBlock|BottleneckBlock): Block module of model.
        depth (int, optional): Layers of ResNet, Default: 50.
        width (int, optional): Base width per convolution group for each convolution block, Default: 64.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
        groups (int, optional): Number of groups for each convolution block, Default: 1.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import ResNet
            from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
            # build ResNet with 18 layers
            resnet18 = ResNet(BasicBlock, 18)
            # build ResNet with 50 layers
            resnet50 = ResNet(BottleneckBlock, 50)
            # build Wide ResNet model
            wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
            # build ResNeXt model
            resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)
            x = paddle.rand([1, 3, 224, 224])
            out = resnet18(x)
            print(out.shape)
            # [1, 1000]
    """

    def __init__(self, block, depth=50, width=64, with_pool=True, groups=1):
        super(ResNet, self).__init__()
        layer_cfg = {
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
            152: [3, 8, 36, 3]
        }

        layers = layer_cfg[depth]
        self.groups = groups
        self.base_width = width
        self.with_pool = with_pool
        self._norm_layer = nn.BatchNorm2D

        self.inplanes = 64
        self.dilation = 1

        self.conv1 = nn.Conv2D(
            3,
            self.inplanes,
            kernel_size=7,
            stride=2,
            padding=3,
            bias_attr=False)
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        if with_pool:
            self.avgpool = nn.AdaptiveAvgPool2D((1, 1))

        ch_out_list = [64, 128, 256, 512]
        block = BottleneckBlock if depth >= 50 else BasicBlock

        self._out_channels = [block.expansion * v for v in ch_out_list]
        self._out_strides = [4, 8, 16, 32]
        self.return_idx = [0, 1, 2, 3]

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2D(
                    self.inplanes,
                    planes * block.expansion,
                    1,
                    stride=stride,
                    bias_attr=False),
                norm_layer(planes * block.expansion), )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    norm_layer=norm_layer))

        return nn.Sequential(*layers)

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=self._out_channels[i], stride=self._out_strides[i])
            for i in self.return_idx
        ]

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        out_layers = []
        x = self.layer1(x)
        out_layers.append(x)
        x = self.layer2(x)
        out_layers.append(x)
        x = self.layer3(x)
        out_layers.append(x)
        x = self.layer4(x)
        out_layers.append(x)

        if self.with_pool:
            x = self.avgpool(x)

        return out_layers


@register
@serializable
class CLRResNet(nn.Layer):
    def __init__(self,
                 resnet='resnet18',
                 pretrained=True,
                 out_conv=False,
                 fea_stride=8,
                 out_channel=128,
                 in_channels=[64, 128, 256, 512],
                 cfg=None):
        super(CLRResNet, self).__init__()
        self.cfg = cfg
        self.in_channels = in_channels

        self.model = eval(resnet)(pretrained=pretrained)
        self.out = None
        if out_conv:
            out_channel = 512
            for chan in reversed(self.in_channels):
                if chan < 0: continue
                out_channel = chan
                break
            self.out = nn.Conv2D(
                out_channel * self.model.expansion,
                cfg.featuremap_out_channel,
                kernel_size=1,
                bias_attr=False)

    @property
    def out_shape(self):
        return self.model.out_shape

    def forward(self, x):
        x = self.model(x)
        if self.out:
            x[-1] = self.out(x[-1])
        return x


def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch])

        param = paddle.load(weight_path)
        model.set_dict(param)

    return model


def resnet18(pretrained=False, **kwargs):
    """ResNet 18-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 18-layer model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnet18
            # build model
            model = resnet18()
            # build model and load imagenet pretrained weight
            # model = resnet18(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)


def resnet34(pretrained=False, **kwargs):
    """ResNet 34-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 34-layer model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnet34
            # build model
            model = resnet34()
            # build model and load imagenet pretrained weight
            # model = resnet34(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)


def resnet50(pretrained=False, **kwargs):
    """ResNet 50-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 50-layer model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnet50
            # build model
            model = resnet50()
            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)


def resnet101(pretrained=False, **kwargs):
    """ResNet 101-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 101-layer.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnet101
            # build model
            model = resnet101()
            # build model and load imagenet pretrained weight
            # model = resnet101(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)


def resnet152(pretrained=False, **kwargs):
    """ResNet 152-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 152-layer model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnet152
            # build model
            model = resnet152()
            # build model and load imagenet pretrained weight
            # model = resnet152(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)


def resnext50_32x4d(pretrained=False, **kwargs):
    """ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 32x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext50_32x4d
            # build model
            model = resnext50_32x4d()
            # build model and load imagenet pretrained weight
            # model = resnext50_32x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext50_32x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext50_64x4d(pretrained=False, **kwargs):
    """ResNeXt-50 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 64x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext50_64x4d
            # build model
            model = resnext50_64x4d()
            # build model and load imagenet pretrained weight
            # model = resnext50_64x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext50_64x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext101_32x4d(pretrained=False, **kwargs):
    """ResNeXt-101 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 32x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext101_32x4d
            # build model
            model = resnext101_32x4d()
            # build model and load imagenet pretrained weight
            # model = resnext101_32x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext101_32x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext101_64x4d(pretrained=False, **kwargs):
    """ResNeXt-101 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 64x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext101_64x4d
            # build model
            model = resnext101_64x4d()
            # build model and load imagenet pretrained weight
            # model = resnext101_64x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext101_64x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext152_32x4d(pretrained=False, **kwargs):
    """ResNeXt-152 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 32x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext152_32x4d
            # build model
            model = resnext152_32x4d()
            # build model and load imagenet pretrained weight
            # model = resnext152_32x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext152_32x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def resnext152_64x4d(pretrained=False, **kwargs):
    """ResNeXt-152 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 64x4d model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import resnext152_64x4d
            # build model
            model = resnext152_64x4d()
            # build model and load imagenet pretrained weight
            # model = resnext152_64x4d(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext152_64x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def wide_resnet50_2(pretrained=False, **kwargs):
    """Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-50-2 model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import wide_resnet50_2
            # build model
            model = wide_resnet50_2()
            # build model and load imagenet pretrained weight
            # model = wide_resnet50_2(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)


def wide_resnet101_2(pretrained=False, **kwargs):
    """Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-101-2 model.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.models import wide_resnet101_2
            # build model
            model = wide_resnet101_2()
            # build model and load imagenet pretrained weight
            # model = wide_resnet101_2(pretrained=True)
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)
            print(out.shape)
            # [1, 1000]
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained,
                   **kwargs)