# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle.utils.download import get_weights_path_from_url from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec __all__ = ['CLRResNet'] model_urls = { 'resnet18': 'https://x2paddle.bj.bcebos.com/vision/models/resnet18-pt.pdparams', 'resnet34': 'https://x2paddle.bj.bcebos.com/vision/models/resnet34-pt.pdparams', 'resnet50': 'https://x2paddle.bj.bcebos.com/vision/models/resnet50-pt.pdparams', 'resnet101': 'https://x2paddle.bj.bcebos.com/vision/models/resnet101-pt.pdparams', 'resnet152': 'https://x2paddle.bj.bcebos.com/vision/models/resnet152-pt.pdparams', 'resnext50_32x4d': 'https://x2paddle.bj.bcebos.com/vision/models/resnext50_32x4d-pt.pdparams', 'resnext101_32x8d': 'https://x2paddle.bj.bcebos.com/vision/models/resnext101_32x8d-pt.pdparams', 'wide_resnet50_2': 'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet50_2-pt.pdparams', 'wide_resnet101_2': 'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet101_2-pt.pdparams', } class BasicBlock(nn.Layer): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock") self.conv1 = nn.Conv2D( inplanes, planes, 3, padding=1, stride=stride, bias_attr=False) self.bn1 = norm_layer(planes) self.relu = nn.ReLU() self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class BottleneckBlock(nn.Layer): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BottleneckBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D width = int(planes * (base_width / 64.)) * groups self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False) self.bn1 = norm_layer(width) self.conv2 = nn.Conv2D( width, width, 3, padding=dilation, stride=stride, groups=groups, dilation=dilation, bias_attr=False) self.bn2 = norm_layer(width) self.conv3 = nn.Conv2D( width, planes * self.expansion, 1, bias_attr=False) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Layer): """ResNet model from `"Deep Residual Learning for Image Recognition" `_. Args: Block (BasicBlock|BottleneckBlock): Block module of model. depth (int, optional): Layers of ResNet, Default: 50. width (int, optional): Base width per convolution group for each convolution block, Default: 64. num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. groups (int, optional): Number of groups for each convolution block, Default: 1. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet model. Examples: .. code-block:: python import paddle from paddle.vision.models import ResNet from paddle.vision.models.resnet import BottleneckBlock, BasicBlock # build ResNet with 18 layers resnet18 = ResNet(BasicBlock, 18) # build ResNet with 50 layers resnet50 = ResNet(BottleneckBlock, 50) # build Wide ResNet model wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2) # build ResNeXt model resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32) x = paddle.rand([1, 3, 224, 224]) out = resnet18(x) print(out.shape) # [1, 1000] """ def __init__(self, block, depth=50, width=64, with_pool=True, groups=1): super(ResNet, self).__init__() layer_cfg = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3] } layers = layer_cfg[depth] self.groups = groups self.base_width = width self.with_pool = with_pool self._norm_layer = nn.BatchNorm2D self.inplanes = 64 self.dilation = 1 self.conv1 = nn.Conv2D( 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias_attr=False) self.bn1 = self._norm_layer(self.inplanes) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) if with_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) ch_out_list = [64, 128, 256, 512] block = BottleneckBlock if depth >= 50 else BasicBlock self._out_channels = [block.expansion * v for v in ch_out_list] self._out_strides = [4, 8, 16, 32] self.return_idx = [0, 1, 2, 3] def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, 1, stride=stride, bias_attr=False), norm_layer(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, norm_layer=norm_layer)) return nn.Sequential(*layers) @property def out_shape(self): return [ ShapeSpec( channels=self._out_channels[i], stride=self._out_strides[i]) for i in self.return_idx ] def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) out_layers = [] x = self.layer1(x) out_layers.append(x) x = self.layer2(x) out_layers.append(x) x = self.layer3(x) out_layers.append(x) x = self.layer4(x) out_layers.append(x) if self.with_pool: x = self.avgpool(x) return out_layers @register @serializable class CLRResNet(nn.Layer): def __init__(self, resnet='resnet18', pretrained=True, out_conv=False, fea_stride=8, out_channel=128, in_channels=[64, 128, 256, 512], cfg=None): super(CLRResNet, self).__init__() self.cfg = cfg self.in_channels = in_channels self.model = eval(resnet)(pretrained=pretrained) self.out = None if out_conv: out_channel = 512 for chan in reversed(self.in_channels): if chan < 0: continue out_channel = chan break self.out = nn.Conv2D( out_channel * self.model.expansion, cfg.featuremap_out_channel, kernel_size=1, bias_attr=False) @property def out_shape(self): return self.model.out_shape def forward(self, x): x = self.model(x) if self.out: x[-1] = self.out(x[-1]) return x def _resnet(arch, Block, depth, pretrained, **kwargs): model = ResNet(Block, depth, **kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch]) param = paddle.load(weight_path) model.set_dict(param) return model def resnet18(pretrained=False, **kwargs): """ResNet 18-layer model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet 18-layer model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnet18 # build model model = resnet18() # build model and load imagenet pretrained weight # model = resnet18(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs) def resnet34(pretrained=False, **kwargs): """ResNet 34-layer model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet 34-layer model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnet34 # build model model = resnet34() # build model and load imagenet pretrained weight # model = resnet34(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs) def resnet50(pretrained=False, **kwargs): """ResNet 50-layer model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet 50-layer model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnet50 # build model model = resnet50() # build model and load imagenet pretrained weight # model = resnet50(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs) def resnet101(pretrained=False, **kwargs): """ResNet 101-layer model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet 101-layer. Examples: .. code-block:: python import paddle from paddle.vision.models import resnet101 # build model model = resnet101() # build model and load imagenet pretrained weight # model = resnet101(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs) def resnet152(pretrained=False, **kwargs): """ResNet 152-layer model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNet 152-layer model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnet152 # build model model = resnet152() # build model and load imagenet pretrained weight # model = resnet152(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs) def resnext50_32x4d(pretrained=False, **kwargs): """ResNeXt-50 32x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 32x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext50_32x4d # build model model = resnext50_32x4d() # build model and load imagenet pretrained weight # model = resnext50_32x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 32 kwargs['width'] = 4 return _resnet('resnext50_32x4d', BottleneckBlock, 50, pretrained, **kwargs) def resnext50_64x4d(pretrained=False, **kwargs): """ResNeXt-50 64x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 64x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext50_64x4d # build model model = resnext50_64x4d() # build model and load imagenet pretrained weight # model = resnext50_64x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 64 kwargs['width'] = 4 return _resnet('resnext50_64x4d', BottleneckBlock, 50, pretrained, **kwargs) def resnext101_32x4d(pretrained=False, **kwargs): """ResNeXt-101 32x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 32x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext101_32x4d # build model model = resnext101_32x4d() # build model and load imagenet pretrained weight # model = resnext101_32x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 32 kwargs['width'] = 4 return _resnet('resnext101_32x4d', BottleneckBlock, 101, pretrained, **kwargs) def resnext101_64x4d(pretrained=False, **kwargs): """ResNeXt-101 64x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 64x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext101_64x4d # build model model = resnext101_64x4d() # build model and load imagenet pretrained weight # model = resnext101_64x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 64 kwargs['width'] = 4 return _resnet('resnext101_64x4d', BottleneckBlock, 101, pretrained, **kwargs) def resnext152_32x4d(pretrained=False, **kwargs): """ResNeXt-152 32x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 32x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext152_32x4d # build model model = resnext152_32x4d() # build model and load imagenet pretrained weight # model = resnext152_32x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 32 kwargs['width'] = 4 return _resnet('resnext152_32x4d', BottleneckBlock, 152, pretrained, **kwargs) def resnext152_64x4d(pretrained=False, **kwargs): """ResNeXt-152 64x4d model from `"Aggregated Residual Transformations for Deep Neural Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 64x4d model. Examples: .. code-block:: python import paddle from paddle.vision.models import resnext152_64x4d # build model model = resnext152_64x4d() # build model and load imagenet pretrained weight # model = resnext152_64x4d(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['groups'] = 64 kwargs['width'] = 4 return _resnet('resnext152_64x4d', BottleneckBlock, 152, pretrained, **kwargs) def wide_resnet50_2(pretrained=False, **kwargs): """Wide ResNet-50-2 model from `"Wide Residual Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-50-2 model. Examples: .. code-block:: python import paddle from paddle.vision.models import wide_resnet50_2 # build model model = wide_resnet50_2() # build model and load imagenet pretrained weight # model = wide_resnet50_2(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['width'] = 64 * 2 return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs) def wide_resnet101_2(pretrained=False, **kwargs): """Wide ResNet-101-2 model from `"Wide Residual Networks" `_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet `. Returns: :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-101-2 model. Examples: .. code-block:: python import paddle from paddle.vision.models import wide_resnet101_2 # build model model = wide_resnet101_2() # build model and load imagenet pretrained weight # model = wide_resnet101_2(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ kwargs['width'] = 64 * 2 return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained, **kwargs)