io.py 26.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yu Yang 已提交
16
from .. import core
T
typhoonzero 已提交
17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
18
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
19 20
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
21
from ..executor import global_scope
Y
yuyang18 已提交
22
from layer_function_generator import generate_layer_fn, templatedoc
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24
__all__ = [
Y
yi.wu 已提交
25 26 27
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'Recv',
    'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
    'double_buffer', 'random_data_generator', 'Preprocessor', 'load'
Y
Yu Yang 已提交
28
]
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
39
    **Data Layer**
Y
Yu Yang 已提交
40

K
kavyasrinet 已提交
41
    This function takes in the input and based on whether data has
C
caoying03 已提交
42
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
43
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
44
    following operators in the graph.
Y
Yu Yang 已提交
45 46 47 48

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
78
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
79 80 81 82 83
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
84 85
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
86
    return data_var
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
118
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
119
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
120
        self.inputs = inputs
T
typhoonzero 已提交
121 122 123
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
124 125
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
126
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
140 141 142 143 144 145 146 147
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
148 149
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
150 151 152

        return params, grads

T
typhoonzero 已提交
153 154 155 156 157 158 159
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
160 161 162 163
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
164
        empty_block = Program().global_block()
T
typhoonzero 已提交
165 166

        parent_block.append_op(
167
            type='listen_and_serv',
Y
Yancey1989 已提交
168
            inputs={"X": self.inputs},
T
typhoonzero 已提交
169 170 171 172
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
173
                'OptimizeBlock': current_block,
174 175
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
176
                'grad_to_block_id': [""]
T
typhoonzero 已提交
177 178 179
            })


Y
yi.wu 已提交
180
def Send(endpoints, send_vars, sync=True):
T
typhoonzero 已提交
181
    """
Y
yi.wu 已提交
182 183
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
184 185

    Args:
Y
yi.wu 已提交
186
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
187
                   of send_vars to send
Y
yi.wu 已提交
188 189 190
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
    
T
typhoonzero 已提交
191 192 193 194
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
195
    endpoints = list(set(epmap))
T
typhoonzero 已提交
196 197

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
198
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
199

T
typhoonzero 已提交
200 201 202
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
203 204 205 206 207
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
208 209
    if sync:
        helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
210 211


Y
yi.wu 已提交
212
def Recv(endpoints, get_vars, sync=True):
213
    """
Y
yi.wu 已提交
214
    Receive variables from server side
215 216

    Args:
Y
yi.wu 已提交
217
        endpoints (str): comma seperated IP:PORT pairs in the order
218
                   of send_vars to send
Y
yi.wu 已提交
219 220
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
221

Y
yi.wu 已提交
222 223
    Returns:
        list: list of received variables
224 225 226 227 228 229 230 231 232 233 234 235 236
    """
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
237 238 239
    if sync:
        helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
    return get_vars
Y
Yu Yang 已提交
240 241


Y
Refine  
Yu Yang 已提交
242 243 244 245 246 247 248 249 250 251
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
252 253
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
254 255 256
    return reader


Y
Yu Yang 已提交
257 258 259 260 261
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
262 263 264 265
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
282
    new_op = block.append_op(
F
fengjiayi 已提交
283 284 285
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
286
        attrs=op.all_attrs())
F
fengjiayi 已提交
287
    return new_op
Y
Yu Yang 已提交
288 289


Y
yuyang18 已提交
290
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
291 292 293 294 295
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
296
                       for_parallel=True):
F
fengjiayi 已提交
297
    """
Y
yuyang18 已提交
298
    ${comment}
F
fengjiayi 已提交
299 300

    Args:
Y
yuyang18 已提交
301
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
302
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
303
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
304
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
305
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
306 307 308 309
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
310
       ${out_comment}.
F
fengjiayi 已提交
311 312 313

    Examples:

Y
yuyang18 已提交
314 315 316 317 318 319 320 321
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
322
    """
Y
Yu Yang 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
347 348
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
349 350 351 352 353

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
354
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
355

F
fengjiayi 已提交
356
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
357 358


F
fengjiayi 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

382
        .. code-block:: python
F
fengjiayi 已提交
383

384 385 386 387 388 389 390
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


426 427 428 429
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yi.wu 已提交
430
               thread_num=1,
F
fengjiayi 已提交
431 432
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
433
               for_parallel=True):
F
fengjiayi 已提交
434 435 436
    """
    Open files

F
fengjiayi 已提交
437 438 439
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
440 441 442 443 444 445 446 447

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
448
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
449 450
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
451 452 453 454 455 456 457

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
458
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
459
                                                     './data2.recordio'],
F
fengjiayi 已提交
460 461 462 463 464
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
465 466

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
467
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
468
    """
469 470
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
471 472
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
473 474 475 476 477 478 479 480
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
481
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
482
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
483
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
484 485
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
486
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
487 488 489 490
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
491
            'file_names': filenames,
492 493
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
494 495
        })

F
fengjiayi 已提交
496 497 498 499 500 501 502
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
503

F
fengjiayi 已提交
504
    if for_parallel:
J
JiayiFeng 已提交
505
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
506

F
fengjiayi 已提交
507 508 509
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
510
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
511 512 513
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
514
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
515 516 517 518 519
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
520 521 522 523
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
524 525


526 527
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
528 529 530 531 532 533 534 535 536 537
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
538
def shuffle(reader, buffer_size):
539 540 541
    """
    Shuffle the reader.
    """
542 543
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
544 545


J
JiayiFeng 已提交
546
def batch(reader, batch_size):
F
fengjiayi 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    """
    This layer is a reader decorator. It takes a reader and adds 
    'batching' decoration on it. When reading with the result 
    decorated reader, output data will be automatically organized 
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
            # 
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
            # Each 5 adjacent instances will be automatically combined together 
            # to become a batch. So what we get('data') is a batch data instead 
            # of an instance.
    """
J
JiayiFeng 已提交
582 583 584 585
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


586
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
610 611 612
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
613 614
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
615 616


F
fengjiayi 已提交
617
def multi_pass(reader, pass_num):
618 619
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
620 621


J
JiayiFeng 已提交
622
def parallel(reader):
J
JiayiFeng 已提交
623 624
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
625 626


F
fengjiayi 已提交
627
def read_file(reader):
F
fengjiayi 已提交
628
    """
F
fengjiayi 已提交
629
    Execute the given reader and get data via it.
F
fengjiayi 已提交
630

F
fengjiayi 已提交
631
    A reader is also a Variable. It can be a raw reader generated by 
F
fengjiayi 已提交
632 633 634 635 636
    `fluid.layers.open_files()` or a decorated one generated by 
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
637
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
638 639

    Returns:
F
fengjiayi 已提交
640
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
654 655 656 657
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
658
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
659 660
    ]
    helper.append_op(
F
fengjiayi 已提交
661
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
662 663 664 665
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
666 667 668


class Preprocessor(object):
X
Xin Pan 已提交
669 670 671 672 673 674 675 676 677
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
678

X
Xin Pan 已提交
679 680 681 682 683 684 685 686 687 688
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
731 732 733 734
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
735
        source_vars = []
F
fengjiayi 已提交
736 737 738
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
739
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
740
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)