CHANGELOG.md 13.6 KB
Newer Older
K
Kaipeng Deng 已提交
1 2
简体中文 | [English](./CHANGELOG_en.md)

K
Kaipeng Deng 已提交
3 4 5 6
# 版本更新信息

## 最新版本信息

7 8 9
### 2.4(03.24/2022)

- PP-YOLOE:
F
Feng Ni 已提交
10
  - 发布PP-YOLOE特色模型,l版本COCO test2017数据集精度51.4%,V100预测速度78.1 FPS,精度速度服务器端SOTA
11 12 13 14 15 16 17 18 19 20 21 22 23 24
  - 发布s/m/l/x系列模型,打通TensorRT、ONNX部署能力
  - 支持混合精度训练,训练较PP-YOLOv2加速33%

- PP-PicoDet:
  - 发布PP-PicoDet优化模型,精度提升2%左右,CPU预测速度提升63%。
  - 新增参数量0.7M的PicoDet-XS模型
  - 后处理集成到网络中,优化端到端部署成本

- 行人分析Pipeline:
  - 发布PP-Human行人分析Pipeline,覆盖行人检测、属性识别、行人跟踪、跨镜跟踪、人流量统计、动作识别多种功能,打通TensorRT部署
  - 属性识别支持StrongBaseline模型
  - ReID支持Centroid模型
  - 动作识别支持ST-GCN摔倒检测

F
Feng Ni 已提交
25 26 27
- 模型丰富度:
  - 发布YOLOX,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%

28 29 30 31 32 33 34 35 36
- 框架功能优化:
  - EMA训练速度优化20%,优化EMA训练模型保存方式
  - 支持infer预测结果保存为COCO格式

- 部署优化:
  - RCNN全系列模型支持Paddle2ONNX导出ONNX模型
  - SSD模型支持导出时融合解码OP,优化边缘端部署速度
  - 支持NMS导出TensorRT,TensorRT部署端到端速度提升

K
Kaipeng Deng 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
### 2.3(11.03/2021)

- 特色模型:
  - 检测: 轻量级移动端检测模型PP-PicoDet,精度速度达到移动端SOTA
  - 关键点: 轻量级移动端关键点模型PP-TinyPose

- 模型丰富度:
  - 检测:
    - 新增Swin-Transformer目标检测模型
    - 新增TOOD(Task-aligned One-stage Object Detection)模型
    - 新增GFL(Generalized Focal Loss)目标检测模型
    - 发布Sniper小目标检测优化方法,支持Faster RCNN及PP-YOLO系列模型
    - 发布针对EdgeBoard优化的PP-YOLO-EB模型

  - 跟踪
W
wangguanzhong 已提交
52
    - 发布实时跟踪系统PP-Tracking
K
Kaipeng Deng 已提交
53
    - 发布FairMot高精度模型、小尺度模型和轻量级模型
K
Kaipeng Deng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
    - 发布行人、人头和车辆实跟踪垂类模型库,覆盖航拍监控、自动驾驶、密集人群、极小目标等场景
    - DeepSORT模型适配PP-YOLO, PP-PicoDet等更多检测器

  - 关键点
    - 新增Lite HRNet模型

- 预测部署:
  - YOLOv3系列模型支持NPU预测部署
  - FairMot模型C++预测部署打通
  - 关键点系列模型C++预测部署打通, Paddle Lite预测部署打通

- 文档:
  - 新增各系列模型英文文档

K
Kaipeng Deng 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
### 2.2(08.10/2021)

- 模型丰富度:
    - 发布Transformer检测模型:DETR、Deformable DETR、Sparse RCNN
    - 关键点检测新增Dark模型,发布Dark HRNet模型
    - 发布MPII数据集HRNet关键点检测模型
    - 发布人头、车辆跟踪垂类模型

- 模型优化:
    - 旋转框检测模型S2ANet发布Align Conv优化模型,DOTA数据集mAP优化至74.0

- 预测部署
    - 主流模型支持batch size>1预测部署,包含YOLOv3,PP-YOLO,Faster RCNN,SSD,TTFNet,FCOS
    - 新增多目标跟踪模型(JDE, FairMot, DeepSort) Python端预测部署支持,并支持TensorRT预测
    - 新增多目标跟踪模型FairMot联合关键点检测模型部署Python端预测部署支持
    - 新增关键点检测模型联合PP-YOLO预测部署支持

- 文档:
    - Windows预测部署文档新增TensorRT版本说明
    - FAQ文档更新发布

- 问题修复:
    - 修复PP-YOLO系列模型训练收敛性问题
    - 修复batch size>1时无标签数据训练问题


W
wangguanzhong 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
### 2.1(05.20/2021)
- 模型丰富度提升:
    - 发布关键点模型HRNet,HigherHRNet
    - 发布多目标跟踪模型DeepSort, FairMot, JDE

- 框架基础能力:
    - 支持无标注框训练

- 预测部署:
    - Paddle Inference YOLOv3系列模型支持batch size>1预测
    - 旋转框检测S2ANet模型预测部署打通
    - 增加量化模型Benchmark
    - 增加动态图模型与静态图模型Paddle-Lite demo

- 检测模型压缩:
    - 发布PPYOLO系列模型压缩模型

- 文档:
    - 更新快速开始,预测部署等教程文档
W
wangguanzhong 已提交
113
    - 新增ONNX模型导出教程
W
wangguanzhong 已提交
114 115 116
    - 新增移动端部署文档


K
Kaipeng Deng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
### 2.0(04.15/2021)

  **说明:** 自2.0版本开始,动态图作为PaddleDetection默认版本,原`dygraph`目录切换为根目录,原静态图实现移动到`static`目录下。

  - 动态图模型丰富度提升:
    - 发布PP-YOLOv2及PP-YOLO tiny模型,PP-YOLOv2 COCO test数据集精度达到49.5%,V100预测速度达到68.9 FPS
    - 发布旋转框检测模型S2ANet
    - 发布两阶段实用模型PSS-Det
    - 发布人脸检测模型Blazeface

  - 新增基础模块:
    - 新增SENet,GhostNet,Res2Net骨干网络
    - 新增VisualDL训练可视化支持
    - 新增单类别精度计算及PR曲线绘制功能
    - YOLO系列模型支持NHWC数据格式

  - 预测部署:
    - 发布主要模型的预测benchmark数据
    - 适配TensorRT6,支持TensorRT动态尺寸输入,支持TensorRT int8量化预测
    - PP-YOLO, YOLOv3, SSD, TTFNet, FCOS, Faster RCNN等7类模型在Linux、Windows、NV Jetson平台下python/cpp/TRT预测部署打通:

  - 检测模型压缩:
    - 蒸馏:新增动态图蒸馏支持,并发布YOLOv3-MobileNetV1蒸馏模型
    - 联合策略:新增动态图剪裁+蒸馏联合策略压缩方案,并发布YOLOv3-MobileNetV1的剪裁+蒸馏压缩模型
    - 问题修复:修复动态图量化模型导出问题

  - 文档:
    - 新增动态图英文文档:包含首页文档,入门使用,快速开始,模型算法、新增数据集等
    - 新增动态图中英文安装文档
    - 新增动态图RCNN系列和YOLO系列配置文件模板及配置项说明文档


## 历史版本信息

### 2.0-rc(02.23/2021)
  - 动态图模型丰富度提升:
    - 优化RCNN模型组网及训练方式,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本)
    - 新增支持SSDLite,FCOS,TTFNet,SOLOv2系列模型
    - 新增行人和车辆垂类目标检测模型

  - 新增动态图基础模块:
    - 新增MobileNetV3,HRNet骨干网络
    - 优化RoIAlign计算逻辑,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本)
    - 新增支持Synchronized Batch Norm
    - 新增支持Modulated Deformable Convolution

  - 预测部署:
    - 发布动态图python、C++、Serving部署解决方案及文档,支持Faster RCNN,Mask RCNN,YOLOv3,PP-YOLO,SSD,TTFNet,FCOS,SOLOv2等系列模型预测部署
    - 动态图预测部署支持TensorRT模式FP32,FP16推理加速

  - 检测模型压缩:
    - 裁剪:新增动态图裁剪支持,并发布YOLOv3-MobileNetV1裁剪模型
    - 量化:新增动态图量化支持,并发布YOLOv3-MobileNetV1和YOLOv3-MobileNetV3量化模型

  - 文档:
    - 新增动态图入门教程文档:包含安装说明,快速开始,准备数据,训练/评估/预测流程文档
    - 新增动态图进阶教程文档:包含模型压缩、推理部署文档
    - 新增动态图模型库文档

### v2.0-beta(12.20/2020)
  - 动态图支持:
    - 支持Faster-RCNN, Mask-RCNN, FPN, Cascade Faster/Mask RCNN, YOLOv3和SSD模型,试用版本。
  - 模型提升:
    - 更新PP-YOLO MobileNetv3 large和small模型,精度提升,并新增裁剪和蒸馏后的模型。
  - 新功能:
    - 支持VisualDL可视化数据预处理图片。

  - Bug修复:
    - 修复BlazeFace人脸关键点预测bug。


### v0.5.0(11/2020)
  - 模型丰富度提升:
    - 发布SOLOv2系列模型,其中SOLOv2-Light-R50-VD-DCN-FPN 模型在单卡V100上达到 38.6 FPS,加速24% ,COCO验证集精度达到38.8%, 提升2.4绝对百分点。
    - 新增Android移动端检测demo,包括SSD、YOLO系列模型,可直接扫码安装体验。

  - 移动端模型优化:
    - 新增PACT新量化策略,YOLOv3-Mobilenetv3在COCO数据集上比普通量化相比提升0.7%。

  - 易用性提升及功能组件:
    - 增强generate_proposal_labels算子功能,规避模型出nan风险。
    - 修复deploy下python与C++预测若干问题。
    - 统一COCO与VOC数据集下评估流程,支持输出单类AP和P-R曲线。
    - PP-YOLO支持矩形输入图像。

  - 文档:
    - 新增目标检测全流程教程,新增Jetson平台部署教程。


### v0.4.0(07/2020)
  - 模型丰富度提升:
    - 发布PPYOLO模型,COCO数据集精度达到45.2%,单卡V100预测速度达到72.9 FPS,精度和预测速度优于YOLOv4模型。
    - 新增TTFNet模型,base版本对齐竞品,COCO数据集精度达到32.9%。
    - 新增HTC模型,base版本对齐竞品,COCO数据集精度达到42.2%。
    - 新增BlazeFace人脸关键点检测模型,在Wider-Face数据集的Easy-Set精度达到85.2%。
    - 新增ACFPN模型, COCO数据集精度达到39.6%。
    - 发布服务器端通用目标检测模型(包含676类),相同策略在COCO数据集上,V100为19.5FPS时,COCO mAP可以达到49.4%。

  - 移动端模型优化:
    - 新增SSDLite系列优化模型,包括新增GhostNet的Backbone,新增FPN组件等,精度提升0.5%-1.5%。

  - 易用性提升及功能组件:
    - 新增GridMask, RandomErasing数据增强方法。
    - 新增Matrix NMS支持。
    - 新增EMA(Exponential Moving Average)训练支持。
    - 新增多机训练方法,两机相对于单机平均加速比80%,多机训练支持待进一步验证。

### v0.3.0(05/2020)
  - 模型丰富度提升:
    - 添加Efficientdet-D0模型,速度与精度优于竞品。
    - 新增YOLOv4预测模型,精度对齐竞品;新增YOLOv4在Pascal VOC数据集上微调训练,精度达到85.5%。
    - YOLOv3新增MobileNetV3骨干网络,COCO数据集精度达到31.6%。
    - 添加Anchor-free模型FCOS,精度优于竞品。
    - 添加Anchor-free模型CornernetSqueeze,精度优于竞品,优化模型的COCO数据集精度38.2%, +3.7%,速度较YOLOv3-Darknet53快5%。
    - 添加服务器端实用目标检测模型CascadeRCNN-ResNet50vd模型,速度与精度优于竞品EfficientDet。

  - 移动端推出3种模型:
    - SSDLite系列模型:SSDLite-Mobilenetv3 small/large模型,精度优于竞品。
    - YOLOv3移动端方案: YOLOv3-MobileNetv3模型压缩后加速3.5倍,速度和精度均领先于竞品的SSDLite模型。
    - RCNN移动端方案:CascadeRCNN-MobileNetv3经过系列优化, 推出输入图像分别为320x320和640x640的模型,速度与精度具有较高性价比。

  - 预测部署重构:
    - 新增Python预测部署流程,支持RCNN,YOLO,SSD,RetinaNet,人脸系列模型,支持视频预测。
    - 重构C++预测部署,提高易用性。

  - 易用性提升及功能组件:
    - 增加AutoAugment数据增强。
    - 升级检测库文档结构。
    - 支持迁移学习自动进行shape匹配。
    - 优化mask分支评估阶段内存占用。

### v0.2.0(02/2020)
  - 新增模型:
    - 新增基于CBResNet模型。
    - 新增LibraRCNN模型。
    - 进一步提升YOLOv3模型精度,基于COCO数据精度达到43.2%,相比上个版本提升1.4%。
  - 新增基础模块:
    - 主干网络: 新增CBResNet。
    - loss模块: YOLOv3的loss支持细粒度op组合。
    - 正则模块: 新增DropBlock模块。
  - 功能优化和改进:
    - 加速YOLOv3数据预处理,整体训练提速40%。
    - 优化数据预处理逻辑,提升易用性。
    - 增加人脸检测预测benchmark数据。
    - 增加C++预测引擎Python API预测示例。
  - 检测模型压缩 :
    - 裁剪: 发布MobileNet-YOLOv3裁剪方案和模型,基于VOC数据FLOPs - 69.6%, mAP + 1.4%,基于COCO数据FLOPS-28.8%, mAP + 0.9%; 发布ResNet50vd-dcn-YOLOv3裁剪方案和模型,基于COCO数据集FLOPS - 18.4%, mAP + 0.8%。
    - 蒸馏: 发布MobileNet-YOLOv3蒸馏方案和模型,基于VOC数据mAP + 2.8%,基于COCO数据mAP + 2.1%。
    - 量化: 发布YOLOv3-MobileNet和BlazeFace的量化模型。
    - 裁剪+蒸馏: 发布MobileNet-YOLOv3裁剪+蒸馏方案和模型,基于COCO数据FLOPS - 69.6%,基于TensorRT预测加速64.5%,mAP - 0.3 %; 发布ResNet50vd-dcn-YOLOv3裁剪+蒸馏方案和模型,基于COCO数据FLOPS - 43.7%,基于TensorRT预测加速24.0%,mAP + 0.6 %。
    - 搜索: 开源BlazeFace-Nas的完成搜索方案。
  - 预测部署:
    - 集成 TensorRT,支持FP16、FP32、INT8量化推理加速。
  - 文档:
    - 增加详细的数据预处理模块介绍文档以及实现自定义数据Reader文档。
    - 增加如何新增算法模型的文档。
    - 文档部署到网站: https://paddledetection.readthedocs.io

### 12/2019
- 增加Res2Net模型。
- 增加HRNet模型。
- 增加GIOU loss和DIOU loss。


### 21/11/2019
- 增加CascadeClsAware RCNN模型。
- 增加CBNet,ResNet200和Non-local模型。
- 增加SoftNMS。
- 增加Open Image V5数据集和Objects365数据集模型。

### 10/2019
- 增加增强版YOLOv3模型,精度高达41.4%。
- 增加人脸检测模型BlazeFace、Faceboxes。
- 丰富基于COCO的模型,精度高达51.9%。
- 增加Objects365 2019 Challenge上夺冠的最佳单模型之一CACascade-RCNN。
- 增加行人检测和车辆检测预训练模型。
- 支持FP16训练。
- 增加跨平台的C++推理部署方案。
- 增加模型压缩示例。


### 2/9/2019
- 增加GroupNorm模型。
- 增加CascadeRCNN+Mask模型。

### 5/8/2019
- 增加Modulated Deformable Convolution系列模型。

### 29/7/2019

- 增加检测库中文文档
- 修复R-CNN系列模型训练同时进行评估的问题
- 新增ResNext101-vd + Mask R-CNN + FPN模型
- 新增基于VOC数据集的YOLOv3模型

### 3/7/2019

- 首次发布PaddleDetection检测库和检测模型库
- 模型包括:Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
  R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, 和SSD.