sequence_pool_op.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
30 31 32 33 34
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
      PADDLE_ENFORCE(ctx->HasOutput("MaxIndex"),
                     "Output(MaxIndex) of SequencePoolOp should not be null.");
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
35 36 37
  }
};

38
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
39
 public:
40
  SequencePoolOpMaker(OpProto* proto, OpAttrChecker* op_checker)
41
      : OpProtoAndCheckerMaker(proto, op_checker) {
42
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
43
    AddOutput("Out",
44
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
45
              "infomation.");
46
    AddOutput("MaxIndex",
D
dangqingqing 已提交
47 48
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
49
        .AsIntermediate();
D
dzhwinter 已提交
50 51
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
52
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
53 54
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
55
    AddComment(R"DOC(
56
Sequence Pool Operator.
57

58 59
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
60 61 62
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
63 64
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
65
6. MAX:     $$Out[i] = max(X_i)$$
66

67 68 69
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
70

71 72 73
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
74

75 76
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
77

78 79 80
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
81
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
82 83 84 85
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

86 87 88 89
    )DOC");
  }
};

90
class SequencePoolGradOp : public framework::OperatorWithKernel {
91 92 93
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

94
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
95 96 97 98 99
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
100 101
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
102
    for (int64_t i = 1; i < og_dims.size(); ++i) {
103 104
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
Q
Qiao Longfei 已提交
105
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
106
    ctx->ShareLoD("X", framework::GradVarName("X"));
107
  }
108 109

 protected:
110
  framework::OpKernelType GetExpectedKernelType(
111
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
112 113 114
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        ctx.device_context());
115
  }
116 117 118 119 120 121
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
122 123
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
124
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
125 126
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
127
REGISTER_OP_CPU_KERNEL(
128
    sequence_pool_grad,
Q
QI JUN 已提交
129
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);