sequence_pool_op.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
26 27
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of SequencePoolOp should not be null.");
28 29
    PADDLE_ENFORCE_NOT_NULL(
        ctx.OutputVar("Out"),
30
        "Output(Out) of SequencePoolOp should not be null.");
31

32 33 34 35 36 37 38 39 40 41 42 43 44
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto dims = x->dims();
    auto lod = x->lod();
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    ctx.Output<framework::LoDTensor>("Out")->Resize({dims});
  }
};

45
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
46
 public:
47 48
  SequencePoolOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
49
      : OpProtoAndCheckerMaker(proto, op_checker) {
L
Luo Tao 已提交
50 51 52 53 54
    AddInput("X",
             "A float LoDTensor, the variable-length input of SequencePoolOp");
    AddOutput(
        "Out",
        "A float LoDTensor, the variable-length output of SequencePoolOp.");
55 56 57 58 59
    AddAttr<int>(
        "strategy",
        "(int, default AVERAGE) the pooling strategy of SequencePoolOp.")
        .SetDefault(AVERAGE)
        .InEnum({AVERAGE, SUM, SQRT, MAX, LAST, FIRST});
60
    AddComment(R"DOC(
61 62
    SequencePoolOp pools features of all time-steps of each instance.

L
Luo Tao 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    For a mini-batch of 3 variable lengths sentences, containing 2, 3, and 2 time-steps:
    
    Assume X is a [7,M,N] float LoDTensor, and X->lod()[0] = [0, 2, 5, 7].
    Besides, for the sake of simplicity, we assume M=1 and N=1, 
    and the value of X = [[1, 3], [2, 4, 6], [5, 1]].

    Thus, Out is a [3,1,1] float LoDTensor, but Out->lod() is nullptr.
    And for different strategy, the value of Out is as follows: 

    - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
    - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2), 
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
    - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
79 80 81 82
    )DOC");
  }
};

83
class SequencePoolGradOp : public framework::OperatorWithKernel {
84 85 86 87 88 89
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
90 91 92
                            "Gradient of Out should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "The input X should not be null.");
93 94 95 96 97
    auto og_dims =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims();
    auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims();
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
98
    for (int64_t i = 1; i < og_dims.size(); ++i) {
99 100 101 102 103 104 105 106 107 108 109 110
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    x_grad->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
111 112
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
113
REGISTER_OP_CPU_KERNEL(
114
    sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
115
REGISTER_OP_CPU_KERNEL(
116 117
    sequence_pool_grad,
    ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);