optimizer.py 59.9 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18 19
from contextlib import contextmanager

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
34

35
__all__ = [
Q
qiaolongfei 已提交
36
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
37
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
38
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
39 40
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
41
]
Q
Qiao Longfei 已提交
42 43 44 45 46 47


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
48 49
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
50 51
    """

X
Xin Pan 已提交
52
    def __init__(self, learning_rate, regularization=None, name=None):
53
        if not isinstance(learning_rate, float) and \
54 55
                not isinstance(learning_rate, framework.Variable):
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
56
        self._name = name
D
dzhwinter 已提交
57
        self.regularization = regularization
58
        self._learning_rate = learning_rate
D
dzhwinter 已提交
59 60
        # the learning rate type should be inferenced from loss
        self._dtype = None
61
        # each program should have a independent learning rate
62
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
63
        self._learning_rate_map = dict()
64
        if isinstance(self._learning_rate, framework.Variable):
65 66
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
67 68 69 70 71
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
72
        self.helper = None
Q
Qiao Longfei 已提交
73

Q
Qiao Longfei 已提交
74
    def _create_global_learning_rate(self):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
            # get learning rate Variable from LearningRateDecay
            elif isinstance(self._learning_rate, imperative.LearningRateDecay):
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
                raise TypeError(
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
93
        else:
94 95 96 97 98
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return

99
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
100
                raise TypeError(
101 102
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
103

104 105 106 107 108 109 110 111
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
112

Y
yuyang18 已提交
113
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
114 115 116 117
        """
        get global decayed learning rate
        :return:
        """
118 119
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
120
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
121

Q
Qiao Longfei 已提交
122 123 124 125 126
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

127 128 129 130
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
131 132
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
133
        else:
W
Wu Yi 已提交
134
            if param_lr == 1.0:
Y
yuyang18 已提交
135
                return self._global_learning_rate()
W
Wu Yi 已提交
136
            else:
X
Xin Pan 已提交
137 138 139
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
140
                    return self._global_learning_rate() * param_lr
141 142 143 144 145 146 147

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
148
        """
149 150
        pass

151
    def _finish_update(self, block, parameters_and_grads):
152 153 154 155 156 157 158 159
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
160
            None
161 162 163
        """
        pass

164 165 166 167 168 169
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
170 171 172 173 174 175 176 177 178
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
179 180
        if self._name is not None:
            name = self._name + "_" + name
181 182
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
183
            raise Exception("Accumulator {} already exists for parameter {}".
184
                            format(name, param.name))
185 186
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
187 188
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
189
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
190
            persistable=True,
F
fengjiayi 已提交
191
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
192
            type=param.type,
193
            shape=shape)
Q
Qiao Longfei 已提交
194
        self.helper.set_variable_initializer(
195
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
196
        self._accumulators[name][param.name] = var
197
        return var
198 199 200 201 202 203 204 205 206 207 208

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
209 210
        if self._name is not None:
            name = self._name + "_" + name
211 212 213 214 215 216
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

217
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
218 219 220
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
221
          parameters_and_grads(list(tuple(Variable, Variable))):
222
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
223 224

        Returns:
225
          return_op_list: a list of operators that will complete one step of
226 227 228
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
229
        """
230 231 232 233 234
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
235
        # for parameters and extend _finish_update method to add custom ops.
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
264 265 266 267 268 269 270 271 272
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
273 274
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
290 291 292 293 294 295 296 297 298 299 300 301 302
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
303 304
        return new_param_grads, (table_param, table_grad), sgd_op

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
323

324 325
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
344

345 346
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
376 377
    def minimize(self,
                 loss,
378
                 startup_program=None,
Q
Qiao Longfei 已提交
379 380
                 parameter_list=None,
                 no_grad_set=None):
381 382 383 384 385
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
386

387 388 389 390 391 392
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
393

394 395 396
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
397
        """
398 399 400
        self._dtype = loss.dtype
        program = loss.block.program
        optimize_ops = []
401
        if imperative_base.enabled():
M
minqiyang 已提交
402
            if parameter_list is not None:
M
minqiyang 已提交
403
                parameters = parameter_list
M
minqiyang 已提交
404 405
            else:
                parameters = program.global_block().all_parameters()
M
minqiyang 已提交
406 407 408

            params_grads = []
            for param in parameters:
409 410
                if param.stop_gradient:
                    continue
M
minqiyang 已提交
411 412 413 414 415 416 417
                # create gradient variable
                grad_var = Variable(
                    block=loss.block,
                    name=param._ivar._grad_name(),
                    stop_gradient=True,
                    ivar=param._ivar._grad_ivar())
                params_grads.append((param, grad_var))
418 419
            with program_guard(program, startup_program):
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
420
        else:
421 422 423 424
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
425

Q
Qiao Longfei 已提交
426
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
427 428 429


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
430 431 432 433 434 435 436 437 438 439
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
440 441 442
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
443 444 445 446

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
447
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
448
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
449 450
    """

X
Xin Pan 已提交
451
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
452
        assert learning_rate is not None
Q
Qiao Longfei 已提交
453
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
454 455 456
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
457 458
        self.type = "sgd"

459 460
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
461

Q
Qiao Longfei 已提交
462 463 464 465 466 467
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
468
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
469
            },
M
minqiyang 已提交
470 471
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
472 473

        return sgd_op
474 475 476


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

491
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
492 493 494

        & else:

Q
qiaolongfei 已提交
495
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
496 497 498 499 500 501

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
502 503 504
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
505 506 507 508

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
509
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
510
            optimizer.minimize(cost)
511 512 513
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
514 515 516 517 518 519
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
520 521
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
522
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
523 524 525
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
526 527
        self.type = "momentum"
        self._momentum = momentum
528
        self._use_nesterov = bool(use_nesterov)
529 530 531 532 533

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
534
            self._add_accumulator(self._velocity_acc_str, p)
535 536 537 538 539 540 541 542 543 544 545 546 547

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
548
                "LearningRate": self._create_param_lr(param_and_grad)
549 550 551 552 553
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
554
            attrs={"mu": self._momentum,
M
minqiyang 已提交
555 556
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
557 558

        return momentum_op
559 560


561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
641 642
            },
            stop_gradient=True)
643 644 645 646

        return momentum_op


647
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
668 669 670
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
671 672 673 674 675 676

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
677 678 679
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
680 681 682 683 684
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
685 686
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
687
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
688 689 690
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
691 692 693 694 695 696 697
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
698
            self._add_accumulator(self._moment_acc_str, p)
699 700 701 702 703 704 705

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

706
        # Create the adagrad optimizer op
707 708 709 710 711 712
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
713
                "LearningRate": self._create_param_lr(param_and_grad)
714 715 716
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
717 718
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
719 720

        return adagrad_op
721 722 723


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
751
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
752
        name: A optional name prefix.
753 754 755 756 757 758
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
759 760 761 762 763 764 765

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

766 767 768
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
769 770
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
771 772 773 774 775

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
776
                 epsilon=1e-8,
X
Xin Pan 已提交
777
                 regularization=None,
Q
Qiao Longfei 已提交
778
                 name=None,
Q
Qiao Longfei 已提交
779
                 lazy_mode=False):
780 781 782 783
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
784
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
785 786 787
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
788 789 790 791
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
792
        self._lazy_mode = lazy_mode
793 794 795 796 797 798

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
799 800
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
801 802 803 804 805 806 807 808 809 810 811 812
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
813 814 815 816 817 818 819 820

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
821 822 823 824 825
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

826
        # create the adam optimize op
827 828 829 830 831
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
832
                "LearningRate": self._create_param_lr(param_and_grad),
833 834
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
835 836
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
837 838 839 840 841 842 843 844 845
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
846
                "epsilon": self._epsilon,
847 848
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
849 850
            },
            stop_gradient=True)
851 852 853

        return adam_op

854
    def _finish_update(self, block, param_and_grads):
855 856 857
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
858
        main_block = block.program.global_block()
859 860 861
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
862 863
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
864 865 866 867 868 869 870 871
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
872 873
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
874 875 876 877 878

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
879 880
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
881 882 883


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
914 915 916
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
917 918 919 920 921 922

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
923 924 925

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
926 927 928
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
929
    _beta1_pow_acc_str = "beta1_pow_acc"
930 931 932 933 934

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
935
                 epsilon=1e-8,
X
Xin Pan 已提交
936 937
                 regularization=None,
                 name=None):
938 939 940 941
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
942
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
943 944 945
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
946 947 948 949 950 951 952 953
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
954 955
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
956 957 958 959 960 961
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
962 963 964 965 966 967 968

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
969 970
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
971 972 973 974 975 976
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
977
                "LearningRate": self._create_param_lr(param_and_grad),
978 979
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
980
                "Beta1Pow": beta1_pow_acc
981 982 983 984 985 986 987 988 989 990
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
991 992
            },
            stop_gradient=True)
993 994 995

        return adamax_op

996
    def _finish_update(self, block, parameters_and_grads):
997 998 999
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1000
        main_block = block.program.global_block()
1001 1002 1003
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1004 1005
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1006 1007 1008 1009 1010 1011
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1012 1013
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1014 1015 1016


class DecayedAdagradOptimizer(Optimizer):
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1039 1040 1041
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1042 1043 1044 1045 1046 1047

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1048 1049 1050

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1051 1052 1053
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1054 1055 1056 1057 1058 1059
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1060 1061 1062 1063
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1064
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1065 1066 1067
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1095 1096
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1097 1098

        return decayed_adagrad_op
1099 1100


1101
class AdadeltaOptimizer(Optimizer):
1102 1103
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1104

1105
    Simple Adadelta optimizer with average squared grad state and
1106
    average squared update state.
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1119
        learning_rate(float): global learning rate
1120 1121
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1122 1123 1124
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1125 1126 1127 1128 1129 1130 1131

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1132 1133 1134

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1135
    """
1136

1137 1138 1139
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1140 1141 1142 1143 1144 1145
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1146 1147 1148 1149 1150 1151
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1152
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1153 1154 1155
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1156 1157 1158 1159 1160
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1161 1162
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1163 1164 1165 1166 1167 1168

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1169 1170
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1192 1193
                   "rho": self._rho},
            stop_gradient=True)
1194 1195 1196 1197

        return adadelta_op


Q
qingqing01 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1208
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1209 1210 1211 1212

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1213
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1214 1215 1216 1217 1218 1219

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1220
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1236 1237 1238 1239
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1240
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1241 1242 1243 1244 1245 1246
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1247
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1248 1249 1250
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1251
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1252
            set 0.0 by default.
1253 1254 1255 1256
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1257 1258 1259
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1273
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1274 1275 1276 1277 1278 1279

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1280
                 centered=False,
X
Xin Pan 已提交
1281 1282
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1283
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1284 1285 1286
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1300
        self._centered = centered
Q
qingqing01 已提交
1301 1302 1303 1304 1305 1306 1307 1308

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1309
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1319 1320
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1321 1322 1323 1324 1325 1326 1327
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1328
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1329 1330 1331 1332 1333
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1334 1335
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1336 1337 1338 1339
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1340 1341
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1342 1343
            },
            stop_gradient=True)
Q
qingqing01 已提交
1344 1345 1346 1347

        return rmsprop_op


Q
qiaolongfei 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1393 1394 1395
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1405 1406 1407

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1408 1409 1410 1411 1412
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1413 1414 1415 1416 1417 1418 1419
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1420
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1421 1422 1423
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1464 1465
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1466 1467 1468 1469

        return ftrl_op


1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1484
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1485
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1486
Ftrl = FtrlOptimizer
1487
LarsMomentum = LarsMomentumOptimizer
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1503 1504 1505
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1506
    Examples:
Q
qiaolongfei 已提交
1507 1508 1509

      .. code-block:: python

1510
        optimizer = fluid.optimizer.Momentum()
1511 1512
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1513 1514 1515 1516 1517
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1518 1519 1520 1521

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1522 1523 1524
    """

    def __init__(self,
W
wanghaoshuang 已提交
1525
                 average_window_rate,
1526 1527
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1528 1529 1530 1531
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1532 1533 1534
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1535

1536
        self.params_grads = []
1537 1538
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1539
            if param.do_model_average != False:
1540 1541 1542 1543
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1544
                    stop_gradient=True)
1545
                self.params_grads.append((param, grad))
1546

1547
        for param, grad in self.params_grads:
1548 1549
            if grad is None:
                continue
X
Xin Pan 已提交
1550 1551
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1552
                self._append_average_accumulate_op(param)
1553

1554 1555 1556 1557
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1558
                self._add_average_apply_op(block, param_grad)
1559 1560 1561 1562 1563

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1564
                self._add_average_restore_op(block, param_grad)
1565

1566
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1567 1568 1569 1570 1571 1572
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1573
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1574
        old_num_accumulates = block._clone_variable(
1575
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1576
        num_updates = block._clone_variable(
1577 1578 1579 1580 1581 1582
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1583 1584 1585 1586
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1587
        ops._elementwise_div(x=sum, y=tmp, out=param)
1588 1589

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1590 1591
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1629 1630
            },
            stop_gradient=True)
1631

1632 1633
    @contextmanager
    def apply(self, executor, need_restore=True):
1634 1635
        """Apply average values to parameters of current model.
        """
1636 1637 1638 1639 1640 1641
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1642 1643 1644 1645

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1646
        executor.run(self.restore_program)