efficientdet.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division

from collections import OrderedDict

import paddle.fluid as fluid

from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register

__all__ = ['EfficientDet']


@register
class EfficientDet(object):
    """
    EfficientDet architecture, see https://arxiv.org/abs/1911.09070

    Args:
        backbone (object): backbone instance
        fpn (object): feature pyramid network instance
        retina_head (object): `RetinaHead` instance
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'fpn', 'efficient_head', 'anchor_grid']

    def __init__(self,
                 backbone,
                 fpn,
                 efficient_head,
                 anchor_grid,
                 box_loss_weight=50.):
        super(EfficientDet, self).__init__()
        self.backbone = backbone
        self.fpn = fpn
        self.efficient_head = efficient_head
        self.anchor_grid = anchor_grid
        self.box_loss_weight = box_loss_weight

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        if mode == 'train':
            gt_labels = feed_vars['gt_label']
            gt_targets = feed_vars['gt_target']
            fg_num = feed_vars['fg_num']
        else:
            im_info = feed_vars['im_info']

        mixed_precision_enabled = mixed_precision_global_state() is not None
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')
        body_feats = self.backbone(im)
        if mixed_precision_enabled:
            body_feats = [fluid.layers.cast(f, 'float32') for f in body_feats]
        body_feats = self.fpn(body_feats)

        # XXX not used for training, but the parameters are needed when
        # exporting inference model
        anchors = self.anchor_grid()

        if mode == 'train':
            loss = self.efficient_head.get_loss(body_feats, gt_labels,
                                                gt_targets, fg_num)
            loss_cls = loss['loss_cls']
            loss_bbox = loss['loss_bbox']
            total_loss = loss_cls + self.box_loss_weight * loss_bbox
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.efficient_head.get_prediction(body_feats, anchors,
                                                      im_info)
            return pred

    def _inputs_def(self, image_shape):
        im_shape = [None] + image_shape
        inputs_def = {
            'image': {
                'shape': im_shape,
                'dtype': 'float32'
            },
            'im_info': {
                'shape': [None, 3],
                'dtype': 'float32'
            },
            'im_id': {
                'shape': [None, 1],
                'dtype': 'int64'
            },
            'im_shape': {
                'shape': [None, 3],
                'dtype': 'float32'
            },
            'fg_num': {
                'shape': [None, 1],
                'dtype': 'int32'
            },
            'gt_label': {
                'shape': [None, None, 1],
                'dtype': 'int32'
            },
            'gt_target': {
                'shape': [None, None, 4],
                'dtype': 'float32'
            },
        }
        return inputs_def

    def build_inputs(self,
                     image_shape=[3, None, None],
                     fields=[
                         'image', 'im_info', 'im_id', 'fg_num', 'gt_label',
                         'gt_target'
                     ],
                     use_dataloader=True,
                     iterable=False):
        inputs_def = self._inputs_def(image_shape)
        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=16,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')