# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from collections import OrderedDict import paddle.fluid as fluid from ppdet.experimental import mixed_precision_global_state from ppdet.core.workspace import register __all__ = ['EfficientDet'] @register class EfficientDet(object): """ EfficientDet architecture, see https://arxiv.org/abs/1911.09070 Args: backbone (object): backbone instance fpn (object): feature pyramid network instance retina_head (object): `RetinaHead` instance """ __category__ = 'architecture' __inject__ = ['backbone', 'fpn', 'efficient_head', 'anchor_grid'] def __init__(self, backbone, fpn, efficient_head, anchor_grid, box_loss_weight=50.): super(EfficientDet, self).__init__() self.backbone = backbone self.fpn = fpn self.efficient_head = efficient_head self.anchor_grid = anchor_grid self.box_loss_weight = box_loss_weight def build(self, feed_vars, mode='train'): im = feed_vars['image'] if mode == 'train': gt_labels = feed_vars['gt_label'] gt_targets = feed_vars['gt_target'] fg_num = feed_vars['fg_num'] else: im_info = feed_vars['im_info'] mixed_precision_enabled = mixed_precision_global_state() is not None if mixed_precision_enabled: im = fluid.layers.cast(im, 'float16') body_feats = self.backbone(im) if mixed_precision_enabled: body_feats = [fluid.layers.cast(f, 'float32') for f in body_feats] body_feats = self.fpn(body_feats) # XXX not used for training, but the parameters are needed when # exporting inference model anchors = self.anchor_grid() if mode == 'train': loss = self.efficient_head.get_loss(body_feats, gt_labels, gt_targets, fg_num) loss_cls = loss['loss_cls'] loss_bbox = loss['loss_bbox'] total_loss = loss_cls + self.box_loss_weight * loss_bbox loss.update({'loss': total_loss}) return loss else: pred = self.efficient_head.get_prediction(body_feats, anchors, im_info) return pred def _inputs_def(self, image_shape): im_shape = [None] + image_shape inputs_def = { 'image': { 'shape': im_shape, 'dtype': 'float32' }, 'im_info': { 'shape': [None, 3], 'dtype': 'float32' }, 'im_id': { 'shape': [None, 1], 'dtype': 'int64' }, 'im_shape': { 'shape': [None, 3], 'dtype': 'float32' }, 'fg_num': { 'shape': [None, 1], 'dtype': 'int32' }, 'gt_label': { 'shape': [None, None, 1], 'dtype': 'int32' }, 'gt_target': { 'shape': [None, None, 4], 'dtype': 'float32' }, } return inputs_def def build_inputs(self, image_shape=[3, None, None], fields=[ 'image', 'im_info', 'im_id', 'fg_num', 'gt_label', 'gt_target' ], use_dataloader=True, iterable=False): inputs_def = self._inputs_def(image_shape) feed_vars = OrderedDict([(key, fluid.data( name=key, shape=inputs_def[key]['shape'], dtype=inputs_def[key]['dtype'])) for key in fields]) loader = fluid.io.DataLoader.from_generator( feed_list=list(feed_vars.values()), capacity=16, use_double_buffer=True, iterable=iterable) if use_dataloader else None return feed_vars, loader def train(self, feed_vars): return self.build(feed_vars, 'train') def eval(self, feed_vars): return self.build(feed_vars, 'test') def test(self, feed_vars): return self.build(feed_vars, 'test')