operators.py 155.1 KB
Newer Older
W
wangxinxin08 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# function:
#    operators to process sample,
#    eg: decode/resize/crop image

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

W
wangxinxin08 已提交
28
from numbers import Number, Integral
Q
qingqing01 已提交
29 30 31 32 33 34

import uuid
import random
import math
import numpy as np
import os
W
wangxinxin08 已提交
35
import copy
G
George Ni 已提交
36
import logging
Q
qingqing01 已提交
37
import cv2
M
Manuel Garcia 已提交
38
from PIL import Image, ImageDraw
W
Wenyu 已提交
39 40 41
import pickle
import threading
MUTEX = threading.Lock()
Q
qingqing01 已提交
42

43
import paddle
Q
qingqing01 已提交
44
from ppdet.core.workspace import serializable
45
from ..reader import Compose
Q
qingqing01 已提交
46 47 48 49 50

from .op_helper import (satisfy_sample_constraint, filter_and_process,
                        generate_sample_bbox, clip_bbox, data_anchor_sampling,
                        satisfy_sample_constraint_coverage, crop_image_sampling,
                        generate_sample_bbox_square, bbox_area_sampling,
51
                        is_poly, get_border)
Q
qingqing01 已提交
52 53

from ppdet.utils.logger import setup_logger
54 55
from ppdet.utils.compact import imagedraw_textsize_c

W
wangguanzhong 已提交
56
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
Q
qingqing01 已提交
57 58
logger = setup_logger(__name__)

W
wangxinxin08 已提交
59
registered_ops = []
Q
qingqing01 已提交
60

W
wangxinxin08 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

def register_op(cls):
    registered_ops.append(cls.__name__)
    if not hasattr(BaseOperator, cls.__name__):
        setattr(BaseOperator, cls.__name__, cls)
    else:
        raise KeyError("The {} class has been registered.".format(cls.__name__))
    return serializable(cls)


class BboxError(ValueError):
    pass


class ImageError(ValueError):
    pass


class BaseOperator(object):
    def __init__(self, name=None):
        if name is None:
            name = self.__class__.__name__
        self._id = name + '_' + str(uuid.uuid4())[-6:]

    def apply(self, sample, context=None):
        """ Process a sample.
Q
qingqing01 已提交
87
        Args:
W
wangxinxin08 已提交
88 89 90 91
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
Q
qingqing01 已提交
92
        """
W
wangxinxin08 已提交
93
        return sample
Q
qingqing01 已提交
94

W
wangxinxin08 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def __call__(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        if isinstance(sample, Sequence):
            for i in range(len(sample)):
                sample[i] = self.apply(sample[i], context)
        else:
            sample = self.apply(sample, context)
        return sample

    def __str__(self):
        return str(self._id)


@register_op
class Decode(BaseOperator):
G
George Ni 已提交
116
    def __init__(self):
W
wangxinxin08 已提交
117 118 119
        """ Transform the image data to numpy format following the rgb format
        """
        super(Decode, self).__init__()
Q
qingqing01 已提交
120

W
wangxinxin08 已提交
121
    def apply(self, sample, context=None):
Q
qingqing01 已提交
122 123 124 125
        """ load image if 'im_file' field is not empty but 'image' is"""
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()
W
wangxinxin08 已提交
126
            sample.pop('im_file')
Q
qingqing01 已提交
127

128 129 130 131 132 133 134 135 136
        try:
            im = sample['image']
            data = np.frombuffer(im, dtype='uint8')
            im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
            if 'keep_ori_im' in sample and sample['keep_ori_im']:
                sample['ori_image'] = im
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        except:
            im = sample['image']
W
wangxinxin08 已提交
137

Q
qingqing01 已提交
138 139 140 141
        sample['image'] = im
        if 'h' not in sample:
            sample['h'] = im.shape[0]
        elif sample['h'] != im.shape[0]:
142
            logger.warning(
Q
qingqing01 已提交
143 144 145 146 147 148 149
                "The actual image height: {} is not equal to the "
                "height: {} in annotation, and update sample['h'] by actual "
                "image height.".format(im.shape[0], sample['h']))
            sample['h'] = im.shape[0]
        if 'w' not in sample:
            sample['w'] = im.shape[1]
        elif sample['w'] != im.shape[1]:
150
            logger.warning(
Q
qingqing01 已提交
151 152 153 154 155
                "The actual image width: {} is not equal to the "
                "width: {} in annotation, and update sample['w'] by actual "
                "image width.".format(im.shape[1], sample['w']))
            sample['w'] = im.shape[1]

W
wangxinxin08 已提交
156 157
        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
Q
qingqing01 已提交
158 159 160
        return sample


W
Wenyu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def _make_dirs(dirname):
    try:
        from pathlib import Path
    except ImportError:
        from pathlib2 import Path
    Path(dirname).mkdir(exist_ok=True)


@register_op
class DecodeCache(BaseOperator):
    def __init__(self, cache_root=None):
        '''decode image and caching
        '''
        super(DecodeCache, self).__init__()

176
        self.use_cache = False if cache_root is None else True
W
Wenyu 已提交
177 178 179 180 181 182 183
        self.cache_root = cache_root

        if cache_root is not None:
            _make_dirs(cache_root)

    def apply(self, sample, context=None):

184 185
        if self.use_cache and os.path.exists(
                self.cache_path(self.cache_root, sample['im_file'])):
W
Wenyu 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            path = self.cache_path(self.cache_root, sample['im_file'])
            im = self.load(path)

        else:
            if 'image' not in sample:
                with open(sample['im_file'], 'rb') as f:
                    sample['image'] = f.read()

            im = sample['image']
            data = np.frombuffer(im, dtype='uint8')
            im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
            if 'keep_ori_im' in sample and sample['keep_ori_im']:
                sample['ori_image'] = im
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

201 202
            if self.use_cache and not os.path.exists(
                    self.cache_path(self.cache_root, sample['im_file'])):
W
Wenyu 已提交
203 204 205 206 207 208 209 210 211 212
                path = self.cache_path(self.cache_root, sample['im_file'])
                self.dump(im, path)

        sample['image'] = im
        sample['h'] = im.shape[0]
        sample['w'] = im.shape[1]

        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)

W
Wenyu 已提交
213 214
        sample.pop('im_file')

W
Wenyu 已提交
215 216 217 218 219 220 221 222 223 224
        return sample

    @staticmethod
    def cache_path(dir_oot, im_file):
        return os.path.join(dir_oot, os.path.basename(im_file) + '.pkl')

    @staticmethod
    def load(path):
        with open(path, 'rb') as f:
            im = pickle.load(f)
225
        return im
W
Wenyu 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239

    @staticmethod
    def dump(obj, path):
        MUTEX.acquire()
        try:
            with open(path, 'wb') as f:
                pickle.dump(obj, f)

        except Exception as e:
            logger.warning('dump {} occurs exception {}'.format(path, str(e)))

        finally:
            MUTEX.release()

240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
@register_op
class SniperDecodeCrop(BaseOperator):
    def __init__(self):
        super(SniperDecodeCrop, self).__init__()

    def __call__(self, sample, context=None):
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()
            sample.pop('im_file')

        im = sample['image']
        data = np.frombuffer(im, dtype='uint8')
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)  # BGR mode, but need RGB mode
        if 'keep_ori_im' in sample and sample['keep_ori_im']:
            sample['ori_image'] = im
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

        chip = sample['chip']
        x1, y1, x2, y2 = [int(xi) for xi in chip]
261 262
        im = im[max(y1, 0):min(y2, im.shape[0]), max(x1, 0):min(x2, im.shape[
            1]), :]
263 264 265 266 267 268 269 270 271 272 273 274 275

        sample['image'] = im
        h = im.shape[0]
        w = im.shape[1]
        # sample['im_info'] = [h, w, 1.0]
        sample['h'] = h
        sample['w'] = w

        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
        return sample


Q
qingqing01 已提交
276
@register_op
W
wangxinxin08 已提交
277
class Permute(BaseOperator):
G
George Ni 已提交
278
    def __init__(self):
Q
qingqing01 已提交
279
        """
W
wangxinxin08 已提交
280
        Change the channel to be (C, H, W)
Q
qingqing01 已提交
281
        """
W
wangxinxin08 已提交
282
        super(Permute, self).__init__()
Q
qingqing01 已提交
283

W
wangxinxin08 已提交
284
    def apply(self, sample, context=None):
Q
qingqing01 已提交
285
        im = sample['image']
W
wangxinxin08 已提交
286 287
        im = im.transpose((2, 0, 1))
        sample['image'] = im
288 289 290 291 292

        if 'pre_image' in sample:
            pre_im = sample['pre_image']
            pre_im = pre_im.transpose((2, 0, 1))
            sample['pre_image'] = pre_im
Q
qingqing01 已提交
293 294 295 296
        return sample


@register_op
W
wangxinxin08 已提交
297 298
class Lighting(BaseOperator):
    """
299
    Lighting the image by eigenvalues and eigenvectors
W
wangxinxin08 已提交
300 301 302 303 304
    Args:
        eigval (list): eigenvalues
        eigvec (list): eigenvectors
        alphastd (float): random weight of lighting, 0.1 by default
    """
Q
qingqing01 已提交
305

W
wangxinxin08 已提交
306 307 308 309 310
    def __init__(self, eigval, eigvec, alphastd=0.1):
        super(Lighting, self).__init__()
        self.alphastd = alphastd
        self.eigval = np.array(eigval).astype('float32')
        self.eigvec = np.array(eigvec).astype('float32')
Q
qingqing01 已提交
311

W
wangxinxin08 已提交
312 313 314
    def apply(self, sample, context=None):
        alpha = np.random.normal(scale=self.alphastd, size=(3, ))
        sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
315 316 317

        if 'pre_image' in sample:
            sample['pre_image'] += np.dot(self.eigvec, self.eigval * alpha)
Q
qingqing01 已提交
318 319 320 321
        return sample


@register_op
W
wangxinxin08 已提交
322 323
class RandomErasingImage(BaseOperator):
    def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
Q
qingqing01 已提交
324
        """
W
wangxinxin08 已提交
325
        Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
Q
qingqing01 已提交
326
        Args:
W
wangxinxin08 已提交
327 328
            prob (float): probability to carry out random erasing
            lower (float): lower limit of the erasing area ratio
G
George Ni 已提交
329
            higher (float): upper limit of the erasing area ratio
W
wangxinxin08 已提交
330
            aspect_ratio (float): aspect ratio of the erasing region
Q
qingqing01 已提交
331
        """
W
wangxinxin08 已提交
332
        super(RandomErasingImage, self).__init__()
Q
qingqing01 已提交
333
        self.prob = prob
W
wangxinxin08 已提交
334
        self.lower = lower
335
        self.higher = higher
W
wangxinxin08 已提交
336
        self.aspect_ratio = aspect_ratio
Q
qingqing01 已提交
337

F
Feng Ni 已提交
338
    def apply(self, sample, context=None):
W
wangxinxin08 已提交
339 340 341 342 343 344
        gt_bbox = sample['gt_bbox']
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
Q
qingqing01 已提交
345

W
wangxinxin08 已提交
346 347 348
        for idx in range(gt_bbox.shape[0]):
            if self.prob <= np.random.rand():
                continue
Q
qingqing01 已提交
349

W
wangxinxin08 已提交
350
            x1, y1, x2, y2 = gt_bbox[idx, :]
351 352
            w_bbox = x2 - x1
            h_bbox = y2 - y1
W
wangxinxin08 已提交
353
            area = w_bbox * h_bbox
Q
qingqing01 已提交
354

W
wangxinxin08 已提交
355 356 357
            target_area = random.uniform(self.lower, self.higher) * area
            aspect_ratio = random.uniform(self.aspect_ratio,
                                          1 / self.aspect_ratio)
Q
qingqing01 已提交
358

W
wangxinxin08 已提交
359 360
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
Q
qingqing01 已提交
361

W
wangxinxin08 已提交
362 363 364 365 366 367
            if w < w_bbox and h < h_bbox:
                off_y1 = random.randint(0, int(h_bbox - h))
                off_x1 = random.randint(0, int(w_bbox - w))
                im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
                    x1 + off_x1 + w), :] = 0
        sample['image'] = im
Q
qingqing01 已提交
368 369 370 371
        return sample


@register_op
W
wangxinxin08 已提交
372
class NormalizeImage(BaseOperator):
373 374 375 376 377
    def __init__(self,
                 mean=[0.485, 0.456, 0.406],
                 std=[0.229, 0.224, 0.225],
                 is_scale=True,
                 norm_type='mean_std'):
Q
qingqing01 已提交
378 379
        """
        Args:
W
wangxinxin08 已提交
380 381
            mean (list): the pixel mean
            std (list): the pixel variance
382 383
            is_scale (bool): scale the pixel to [0,1]
            norm_type (str): type in ['mean_std', 'none']
Q
qingqing01 已提交
384
        """
W
wangxinxin08 已提交
385 386 387 388
        super(NormalizeImage, self).__init__()
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
389
        self.norm_type = norm_type
W
wangxinxin08 已提交
390
        if not (isinstance(self.mean, list) and isinstance(self.std, list) and
391 392
                isinstance(self.is_scale, bool) and
                self.norm_type in ['mean_std', 'none']):
W
wangxinxin08 已提交
393 394 395 396
            raise TypeError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))
Q
qingqing01 已提交
397

W
wangxinxin08 已提交
398 399 400
    def apply(self, sample, context=None):
        """Normalize the image.
        Operators:
401 402
            1.(optional) Scale the pixel to [0,1]
            2.(optional) Each pixel minus mean and is divided by std
W
wangxinxin08 已提交
403 404
        """
        im = sample['image']
XYZ_916's avatar
XYZ_916 已提交
405

W
wangxinxin08 已提交
406 407
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
408 409 410 411 412 413 414 415
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
XYZ_916's avatar
XYZ_916 已提交
416

W
wangxinxin08 已提交
417
        sample['image'] = im
418 419 420 421 422 423 424 425 426 427 428 429 430 431

        if 'pre_image' in sample:
            pre_im = sample['pre_image']
            pre_im = pre_im.astype(np.float32, copy=False)
            if self.is_scale:
                scale = 1.0 / 255.0
                pre_im *= scale

            if self.norm_type == 'mean_std':
                mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
                std = np.array(self.std)[np.newaxis, np.newaxis, :]
                pre_im -= mean
                pre_im /= std
            sample['pre_image'] = pre_im
XYZ_916's avatar
XYZ_916 已提交
432

Q
qingqing01 已提交
433 434 435 436
        return sample


@register_op
W
wangxinxin08 已提交
437
class GridMask(BaseOperator):
Q
qingqing01 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def __init__(self,
                 use_h=True,
                 use_w=True,
                 rotate=1,
                 offset=False,
                 ratio=0.5,
                 mode=1,
                 prob=0.7,
                 upper_iter=360000):
        """
        GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
        Args:
            use_h (bool): whether to mask vertically
            use_w (boo;): whether to mask horizontally
            rotate (float): angle for the mask to rotate
            offset (float): mask offset
            ratio (float): mask ratio
            mode (int): gridmask mode
            prob (float): max probability to carry out gridmask
            upper_iter (int): suggested to be equal to global max_iter
        """
W
wangxinxin08 已提交
459
        super(GridMask, self).__init__()
Q
qingqing01 已提交
460 461 462 463 464 465 466 467 468
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.prob = prob
        self.upper_iter = upper_iter

W
wangguanzhong 已提交
469 470
        from .gridmask_utils import Gridmask
        self.gridmask_op = Gridmask(
Q
qingqing01 已提交
471 472 473 474 475 476 477 478 479
            use_h,
            use_w,
            rotate=rotate,
            offset=offset,
            ratio=ratio,
            mode=mode,
            prob=prob,
            upper_iter=upper_iter)

W
wangxinxin08 已提交
480 481
    def apply(self, sample, context=None):
        sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
Q
qingqing01 已提交
482 483 484 485
        return sample


@register_op
W
wangxinxin08 已提交
486 487 488 489 490 491 492 493 494 495 496 497
class RandomDistort(BaseOperator):
    """Random color distortion.
    Args:
        hue (list): hue settings. in [lower, upper, probability] format.
        saturation (list): saturation settings. in [lower, upper, probability] format.
        contrast (list): contrast settings. in [lower, upper, probability] format.
        brightness (list): brightness settings. in [lower, upper, probability] format.
        random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
            order.
        count (int): the number of doing distrot
        random_channel (bool): whether to swap channels randomly
    """
Q
qingqing01 已提交
498

W
wangxinxin08 已提交
499 500 501 502 503 504 505
    def __init__(self,
                 hue=[-18, 18, 0.5],
                 saturation=[0.5, 1.5, 0.5],
                 contrast=[0.5, 1.5, 0.5],
                 brightness=[0.5, 1.5, 0.5],
                 random_apply=True,
                 count=4,
W
Wenyu 已提交
506 507
                 random_channel=False,
                 prob=1.0):
W
wangxinxin08 已提交
508 509 510 511 512 513 514 515
        super(RandomDistort, self).__init__()
        self.hue = hue
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness
        self.random_apply = random_apply
        self.count = count
        self.random_channel = random_channel
W
Wenyu 已提交
516
        self.prob = prob
Q
qingqing01 已提交
517

W
wangxinxin08 已提交
518 519 520 521
    def apply_hue(self, img):
        low, high, prob = self.hue
        if np.random.uniform(0., 1.) < prob:
            return img
Q
qingqing01 已提交
522

W
wangxinxin08 已提交
523 524 525 526 527 528 529 530 531 532 533 534
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        delta = np.random.uniform(low, high)
        u = np.cos(delta * np.pi)
        w = np.sin(delta * np.pi)
        bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
        tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
                         [0.211, -0.523, 0.311]])
        ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
                          [1.0, -1.107, 1.705]])
        t = np.dot(np.dot(ityiq, bt), tyiq).T
        img = np.dot(img, t)
Q
qingqing01 已提交
535 536
        return img

W
wangxinxin08 已提交
537 538 539 540 541 542 543 544 545 546 547 548
    def apply_saturation(self, img):
        low, high, prob = self.saturation
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
        gray = gray.sum(axis=2, keepdims=True)
        gray *= (1.0 - delta)
        img *= delta
        img += gray
Q
qingqing01 已提交
549 550
        return img

W
wangxinxin08 已提交
551 552 553 554 555 556 557
    def apply_contrast(self, img):
        low, high, prob = self.contrast
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img *= delta
Q
qingqing01 已提交
558 559
        return img

W
wangxinxin08 已提交
560 561 562 563 564 565 566 567
    def apply_brightness(self, img):
        low, high, prob = self.brightness
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img += delta
        return img
Q
qingqing01 已提交
568

W
wangxinxin08 已提交
569
    def apply(self, sample, context=None):
W
Wenyu 已提交
570 571
        if random.random() > self.prob:
            return sample
W
wangxinxin08 已提交
572 573 574 575 576 577 578 579 580 581 582
        img = sample['image']
        if self.random_apply:
            functions = [
                self.apply_brightness, self.apply_contrast,
                self.apply_saturation, self.apply_hue
            ]
            distortions = np.random.permutation(functions)[:self.count]
            for func in distortions:
                img = func(img)
            sample['image'] = img
            return sample
Q
qingqing01 已提交
583

W
wangxinxin08 已提交
584 585
        img = self.apply_brightness(img)
        mode = np.random.randint(0, 2)
Q
qingqing01 已提交
586

W
wangxinxin08 已提交
587 588
        if mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
589

W
wangxinxin08 已提交
590 591
        img = self.apply_saturation(img)
        img = self.apply_hue(img)
Q
qingqing01 已提交
592

W
wangxinxin08 已提交
593 594
        if not mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
595

W
wangxinxin08 已提交
596 597 598 599
        if self.random_channel:
            if np.random.randint(0, 2):
                img = img[..., np.random.permutation(3)]
        sample['image'] = img
Q
qingqing01 已提交
600 601 602
        return sample


Z
zhiboniu 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
@register_op
class PhotoMetricDistortion(BaseOperator):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta=32,
                 contrast_range=(0.5, 1.5),
                 saturation_range=(0.5, 1.5),
                 hue_delta=18):
        super(PhotoMetricDistortion, self).__init__()
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    def apply(self, results, context=None):
        """Call function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """

        img = results['image']
        img = img.astype(np.float32)
        # random brightness
        if np.random.randint(2):
            delta = np.random.uniform(-self.brightness_delta,
                                      self.brightness_delta)
            img += delta

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = np.random.randint(2)
        if mode == 1:
            if np.random.randint(2):
                alpha = np.random.uniform(self.contrast_lower,
                                          self.contrast_upper)
                img *= alpha

        # convert color from BGR to HSV
        img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

        # random saturation
        if np.random.randint(2):
            img[..., 1] *= np.random.uniform(self.saturation_lower,
                                             self.saturation_upper)

        # random hue
        if np.random.randint(2):
            img[..., 0] += np.random.uniform(-self.hue_delta, self.hue_delta)
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)

        # random contrast
        if mode == 0:
            if np.random.randint(2):
                alpha = np.random.uniform(self.contrast_lower,
                                          self.contrast_upper)
                img *= alpha

        # randomly swap channels
        if np.random.randint(2):
            img = img[..., np.random.permutation(3)]

        results['image'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
        repr_str += 'contrast_range='
        repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
        repr_str += 'saturation_range='
        repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
        repr_str += f'hue_delta={self.hue_delta})'
        return repr_str


Q
qingqing01 已提交
705
@register_op
W
wangxinxin08 已提交
706 707
class AutoAugment(BaseOperator):
    def __init__(self, autoaug_type="v1"):
Q
qingqing01 已提交
708 709
        """
        Args:
W
wangxinxin08 已提交
710
            autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
Q
qingqing01 已提交
711
        """
W
wangxinxin08 已提交
712 713
        super(AutoAugment, self).__init__()
        self.autoaug_type = autoaug_type
Q
qingqing01 已提交
714

W
wangxinxin08 已提交
715
    def apply(self, sample, context=None):
Q
qingqing01 已提交
716
        """
W
wangxinxin08 已提交
717 718 719 720 721 722 723 724 725
        Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
        """
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
        if len(gt_bbox) == 0:
Q
qingqing01 已提交
726 727
            return sample

W
wangxinxin08 已提交
728 729 730 731 732 733
        height, width, _ = im.shape
        norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
        norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
        norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
        norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
        norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
Q
qingqing01 已提交
734

W
wangxinxin08 已提交
735 736 737 738 739 740 741 742
        from .autoaugment_utils import distort_image_with_autoaugment
        im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
                                                          self.autoaug_type)

        gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
        gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
        gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
        gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
Q
qingqing01 已提交
743 744 745 746 747 748 749

        sample['image'] = im
        sample['gt_bbox'] = gt_bbox
        return sample


@register_op
W
wangxinxin08 已提交
750 751
class RandomFlip(BaseOperator):
    def __init__(self, prob=0.5):
Q
qingqing01 已提交
752 753
        """
        Args:
W
wangxinxin08 已提交
754
            prob (float): the probability of flipping image
Q
qingqing01 已提交
755
        """
W
wangxinxin08 已提交
756 757 758 759
        super(RandomFlip, self).__init__()
        self.prob = prob
        if not (isinstance(self.prob, float)):
            raise TypeError("{}: input type is invalid.".format(self))
Q
qingqing01 已提交
760

W
wangxinxin08 已提交
761 762 763 764 765
    def apply_segm(self, segms, height, width):
        def _flip_poly(poly, width):
            flipped_poly = np.array(poly)
            flipped_poly[0::2] = width - np.array(poly[0::2])
            return flipped_poly.tolist()
Q
qingqing01 已提交
766

W
wangxinxin08 已提交
767 768 769 770 771 772 773
        def _flip_rle(rle, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[:, ::-1]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
774

W
wangxinxin08 已提交
775 776 777 778 779 780 781 782 783 784
        flipped_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                flipped_segms.append([_flip_poly(poly, width) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                flipped_segms.append(_flip_rle(segm, height, width))
        return flipped_segms
Q
qingqing01 已提交
785

W
wangxinxin08 已提交
786 787 788 789 790 791
    def apply_keypoint(self, gt_keypoint, width):
        for i in range(gt_keypoint.shape[1]):
            if i % 2 == 0:
                old_x = gt_keypoint[:, i].copy()
                gt_keypoint[:, i] = width - old_x
        return gt_keypoint
Q
qingqing01 已提交
792

W
wangxinxin08 已提交
793 794
    def apply_image(self, image):
        return image[:, ::-1, :]
Q
qingqing01 已提交
795

W
wangxinxin08 已提交
796 797 798 799 800 801
    def apply_bbox(self, bbox, width):
        oldx1 = bbox[:, 0].copy()
        oldx2 = bbox[:, 2].copy()
        bbox[:, 0] = width - oldx2
        bbox[:, 2] = width - oldx1
        return bbox
Q
qingqing01 已提交
802

W
wangxinxin08 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    def apply(self, sample, context=None):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
            3. Transform the segmentations' x coordinates.
              (Must judge whether the coordinates are normalized!)
        Output:
            sample: the image, bounding box and segmentation part
                    in sample are flipped.
        """
        if np.random.uniform(0, 1) < self.prob:
            im = sample['image']
            height, width = im.shape[:2]
            im = self.apply_image(im)
            if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
                sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
            if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
                sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
                                                    width)
            if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
                sample['gt_keypoint'] = self.apply_keypoint(
                    sample['gt_keypoint'], width)

            if 'semantic' in sample and sample['semantic']:
                sample['semantic'] = sample['semantic'][:, ::-1]

            if 'gt_segm' in sample and sample['gt_segm'].any():
                sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]

            sample['flipped'] = True
            sample['image'] = im
Q
qingqing01 已提交
836 837 838 839
        return sample


@register_op
W
wangxinxin08 已提交
840 841 842
class Resize(BaseOperator):
    def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
        """
843
        Resize image to target size. if keep_ratio is True,
W
wangxinxin08 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
        resize the image's long side to the maximum of target_size
        if keep_ratio is False, resize the image to target size(h, w)
        Args:
            target_size (int|list): image target size
            keep_ratio (bool): whether keep_ratio or not, default true
            interp (int): the interpolation method
        """
        super(Resize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        if not isinstance(target_size, (Integral, Sequence)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
                format(type(target_size)))
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size
Q
qingqing01 已提交
861

W
wangxinxin08 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    def apply_image(self, image, scale):
        im_scale_x, im_scale_y = scale

        return cv2.resize(
            image,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox

Z
zhiboniu 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894
    def apply_area(self, area, scale):
        im_scale_x, im_scale_y = scale
        return area * im_scale_x * im_scale_y

    def apply_joints(self, joints, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        joints[..., 0] *= im_scale_x
        joints[..., 1] *= im_scale_y
        joints[..., 0] = np.clip(joints[..., 0], 0, resize_w)
        joints[..., 1] = np.clip(joints[..., 1], 0, resize_h)
        return joints

W
wangxinxin08 已提交
895 896
    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
W
wangguanzhong 已提交
897
            resized_poly = np.array(poly).astype('float32')
W
wangxinxin08 已提交
898 899 900 901 902 903 904
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)
Q
qingqing01 已提交
905

W
wangxinxin08 已提交
906 907
            mask = mask_util.decode(rle)
            mask = cv2.resize(
G
George Ni 已提交
908
                mask,
W
wangxinxin08 已提交
909 910 911 912 913 914 915
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
916

W
wangxinxin08 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930
        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
Q
qingqing01 已提交
931

W
wangxinxin08 已提交
932
        return resized_segms
Q
qingqing01 已提交
933

W
wangxinxin08 已提交
934 935 936 937 938 939
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
Q
qingqing01 已提交
940

W
wangxinxin08 已提交
941
        # apply image
XYZ_916's avatar
XYZ_916 已提交
942 943 944 945
        if len(im.shape) == 3:
            im_shape = im.shape
        else:
            im_shape = im[0].shape
Q
qingqing01 已提交
946

XYZ_916's avatar
XYZ_916 已提交
947
        if self.keep_ratio:
W
wangxinxin08 已提交
948 949
            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])
Q
qingqing01 已提交
950

W
wangxinxin08 已提交
951 952
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
Q
qingqing01 已提交
953

W
wangxinxin08 已提交
954 955
            im_scale = min(target_size_min / im_size_min,
                           target_size_max / im_size_max)
Q
qingqing01 已提交
956

Z
zhiboniu 已提交
957 958
            resize_h = int(im_scale * float(im_shape[0]) + 0.5)
            resize_w = int(im_scale * float(im_shape[1]) + 0.5)
Q
qingqing01 已提交
959

W
wangxinxin08 已提交
960 961
            im_scale_x = im_scale
            im_scale_y = im_scale
Q
qingqing01 已提交
962
        else:
W
wangxinxin08 已提交
963 964 965 966
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

XYZ_916's avatar
XYZ_916 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
        if len(im.shape) == 3:
            im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
            sample['image'] = im.astype(np.float32)
        else:
            resized_images = []
            for one_im in im:
                applied_im = self.apply_image(one_im, [im_scale_x, im_scale_y])
                resized_images.append(applied_im)

            sample['image'] = np.array(resized_images)

        # 2d keypoints resize
        if 'kps2d' in sample.keys():
            kps2d = sample['kps2d']
            kps2d[:, :, 0] = kps2d[:, :, 0] * im_scale_x
            kps2d[:, :, 1] = kps2d[:, :, 1] * im_scale_y

            sample['kps2d'] = kps2d

W
wangxinxin08 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

Z
zhiboniu 已提交
1002 1003 1004 1005 1006
        # apply areas
        if 'gt_areas' in sample:
            sample['gt_areas'] = self.apply_area(sample['gt_areas'],
                                                 [im_scale_x, im_scale_y])

W
wangxinxin08 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
Q
qingqing01 已提交
1039

Z
zhiboniu 已提交
1040 1041 1042 1043 1044
        if 'gt_joints' in sample:
            sample['gt_joints'] = self.apply_joints(sample['gt_joints'],
                                                    [im_scale_x, im_scale_y],
                                                    [resize_w, resize_h])

Q
qingqing01 已提交
1045 1046 1047 1048
        return sample


@register_op
W
wangxinxin08 已提交
1049
class MultiscaleTestResize(BaseOperator):
Q
qingqing01 已提交
1050
    def __init__(self,
W
wangxinxin08 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                 origin_target_size=[800, 1333],
                 target_size=[],
                 interp=cv2.INTER_LINEAR,
                 use_flip=True):
        """
        Rescale image to the each size in target size, and capped at max_size.
        Args:
            origin_target_size (list): origin target size of image
            target_size (list): A list of target sizes of image.
            interp (int): the interpolation method.
            use_flip (bool): whether use flip augmentation.
        """
        super(MultiscaleTestResize, self).__init__()
        self.interp = interp
        self.use_flip = use_flip
Q
qingqing01 已提交
1066

W
wangxinxin08 已提交
1067 1068 1069 1070 1071
        if not isinstance(target_size, Sequence):
            raise TypeError(
                "Type of target_size is invalid. Must be List or Tuple, now is {}".
                format(type(target_size)))
        self.target_size = target_size
Q
qingqing01 已提交
1072

W
wangxinxin08 已提交
1073 1074 1075 1076
        if not isinstance(origin_target_size, Sequence):
            raise TypeError(
                "Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
                format(type(origin_target_size)))
Q
qingqing01 已提交
1077

W
wangxinxin08 已提交
1078
        self.origin_target_size = origin_target_size
Q
qingqing01 已提交
1079

W
wangxinxin08 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def apply(self, sample, context=None):
        """ Resize the image numpy for multi-scale test.
        """
        samples = []
        resizer = Resize(
            self.origin_target_size, keep_ratio=True, interp=self.interp)
        samples.append(resizer(sample.copy(), context))
        if self.use_flip:
            flipper = RandomFlip(1.1)
            samples.append(flipper(sample.copy(), context=context))
Q
qingqing01 已提交
1090

W
wangxinxin08 已提交
1091 1092 1093
        for size in self.target_size:
            resizer = Resize(size, keep_ratio=True, interp=self.interp)
            samples.append(resizer(sample.copy(), context))
Q
qingqing01 已提交
1094

W
wangxinxin08 已提交
1095
        return samples
Q
qingqing01 已提交
1096 1097


W
wangxinxin08 已提交
1098 1099
@register_op
class RandomResize(BaseOperator):
Q
qingqing01 已提交
1100
    def __init__(self,
W
wangxinxin08 已提交
1101 1102 1103
                 target_size,
                 keep_ratio=True,
                 interp=cv2.INTER_LINEAR,
1104
                 random_range=False,
W
wangxinxin08 已提交
1105 1106 1107 1108 1109 1110 1111 1112
                 random_size=True,
                 random_interp=False):
        """
        Resize image to target size randomly. random target_size and interpolation method
        Args:
            target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
            keep_ratio (bool): whether keep_raio or not, default true
            interp (int): the interpolation method
1113
            random_range (bool): whether random select target size of image, the target_size must be
1114
                a [[min_short_edge, long_edge], [max_short_edge, long_edge]]
W
wangxinxin08 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            random_size (bool): whether random select target size of image
            random_interp (bool): whether random select interpolation method
        """
        super(RandomResize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]
        assert isinstance(target_size, (
            Integral, Sequence)), "target_size must be Integer, List or Tuple"
1130 1131
        if (random_range or random_size) and not isinstance(target_size,
                                                            Sequence):
W
wangxinxin08 已提交
1132
            raise TypeError(
1133
                "Type of target_size is invalid when random_size or random_range is True. Must be List or Tuple, now is {}".
W
wangxinxin08 已提交
1134
                format(type(target_size)))
1135 1136 1137 1138
        if random_range and not len(target_size) == 2:
            raise TypeError(
                "target_size must be two list as [[min_short_edge, long_edge], [max_short_edge, long_edge]] when random_range is True."
            )
W
wangxinxin08 已提交
1139
        self.target_size = target_size
1140
        self.random_range = random_range
W
wangxinxin08 已提交
1141 1142
        self.random_size = random_size
        self.random_interp = random_interp
Q
qingqing01 已提交
1143

W
wangxinxin08 已提交
1144 1145 1146
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
1147 1148 1149 1150 1151
        if self.random_range:
            short_edge = np.random.randint(self.target_size[0][0],
                                           self.target_size[1][0] + 1)
            long_edge = max(self.target_size[0][1], self.target_size[1][1] + 1)
            target_size = [short_edge, long_edge]
W
wangxinxin08 已提交
1152
        else:
1153 1154 1155 1156
            if self.random_size:
                target_size = random.choice(self.target_size)
            else:
                target_size = self.target_size
Q
qingqing01 已提交
1157

W
wangxinxin08 已提交
1158 1159 1160 1161 1162 1163 1164
        if self.random_interp:
            interp = random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, self.keep_ratio, interp)
        return resizer(sample, context=context)
Q
qingqing01 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175


@register_op
class RandomExpand(BaseOperator):
    """Random expand the canvas.
    Args:
        ratio (float): maximum expansion ratio.
        prob (float): probability to expand.
        fill_value (list): color value used to fill the canvas. in RGB order.
    """

W
wangxinxin08 已提交
1176
    def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
Q
qingqing01 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        super(RandomExpand, self).__init__()
        assert ratio > 1.01, "expand ratio must be larger than 1.01"
        self.ratio = ratio
        self.prob = prob
        assert isinstance(fill_value, (Number, Sequence)), \
            "fill value must be either float or sequence"
        if isinstance(fill_value, Number):
            fill_value = (fill_value, ) * 3
        if not isinstance(fill_value, tuple):
            fill_value = tuple(fill_value)
        self.fill_value = fill_value

W
wangxinxin08 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    def apply(self, sample, context=None):
        if np.random.uniform(0., 1.) < self.prob:
            return sample

        im = sample['image']
        height, width = im.shape[:2]
        ratio = np.random.uniform(1., self.ratio)
        h = int(height * ratio)
        w = int(width * ratio)
        if not h > height or not w > width:
            return sample
        y = np.random.randint(0, h - height)
        x = np.random.randint(0, w - width)
        offsets, size = [x, y], [h, w]

        pad = Pad(size,
                  pad_mode=-1,
                  offsets=offsets,
                  fill_value=self.fill_value)

        return pad(sample, context=context)


@register_op
class CropWithSampling(BaseOperator):
    def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
        """
        Args:
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
            satisfy_all (bool): whether all boxes must satisfy.
            e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
           [max sample, max trial, min scale, max scale,
            min aspect ratio, max aspect ratio,
            min overlap, max overlap]
1230
            avoid_no_bbox (bool): whether to avoid the
W
wangxinxin08 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                                  situation where the box does not appear.
        """
        super(CropWithSampling, self).__init__()
        self.batch_sampler = batch_sampler
        self.satisfy_all = satisfy_all
        self.avoid_no_bbox = avoid_no_bbox

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_height, im_width = im.shape[:2]
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
        for sampler in self.batch_sampler:
            found = 0
            for i in range(sampler[1]):
                if found >= sampler[0]:
                    break
                sample_bbox = generate_sample_bbox(sampler)
                if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
                                             self.satisfy_all):
                    sampled_bbox.append(sample_bbox)
                    found = found + 1
        im = np.array(im)
        while sampled_bbox:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            sample_bbox = sampled_bbox.pop(idx)
            sample_bbox = clip_bbox(sample_bbox)
            crop_bbox, crop_class, crop_score = \
                filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
            if self.avoid_no_bbox:
                if len(crop_bbox) < 1:
                    continue
            xmin = int(sample_bbox[0] * im_width)
            xmax = int(sample_bbox[2] * im_width)
            ymin = int(sample_bbox[1] * im_height)
            ymax = int(sample_bbox[3] * im_height)
            im = im[ymin:ymax, xmin:xmax]
            sample['image'] = im
            sample['gt_bbox'] = crop_bbox
            sample['gt_class'] = crop_class
            sample['gt_score'] = crop_score
            return sample
        return sample


@register_op
class CropWithDataAchorSampling(BaseOperator):
    def __init__(self,
                 batch_sampler,
                 anchor_sampler=None,
                 target_size=None,
                 das_anchor_scales=[16, 32, 64, 128],
                 sampling_prob=0.5,
                 min_size=8.,
                 avoid_no_bbox=True):
        """
        Args:
            anchor_sampler (list): anchor_sampling sets of different
                                  parameters for cropping.
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
              e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
                  [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
              [max sample, max trial, min scale, max scale,
               min aspect ratio, max aspect ratio,
               min overlap, max overlap, min coverage, max coverage]
1317
            target_size (int): target image size.
W
wangxinxin08 已提交
1318 1319 1320
            das_anchor_scales (list[float]): a list of anchor scales in data
                anchor smapling.
            min_size (float): minimum size of sampled bbox.
1321
            avoid_no_bbox (bool): whether to avoid the
W
wangxinxin08 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                                  situation where the box does not appear.
        """
        super(CropWithDataAchorSampling, self).__init__()
        self.anchor_sampler = anchor_sampler
        self.batch_sampler = batch_sampler
        self.target_size = target_size
        self.sampling_prob = sampling_prob
        self.min_size = min_size
        self.avoid_no_bbox = avoid_no_bbox
        self.das_anchor_scales = np.array(das_anchor_scales)

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        image_height, image_width = im.shape[:2]
1349 1350 1351 1352
        gt_bbox[:, 0] /= image_width
        gt_bbox[:, 1] /= image_height
        gt_bbox[:, 2] /= image_width
        gt_bbox[:, 3] /= image_height
W
wangxinxin08 已提交
1353 1354 1355 1356 1357
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
Q
qingqing01 已提交
1358

W
wangxinxin08 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        prob = np.random.uniform(0., 1.)
        if prob > self.sampling_prob:  # anchor sampling
            assert self.anchor_sampler
            for sampler in self.anchor_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = data_anchor_sampling(
                        gt_bbox, image_width, image_height,
                        self.das_anchor_scales, self.target_size)
                    if sample_bbox == 0:
                        break
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
Q
qingqing01 已提交
1380

W
wangxinxin08 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1394

W
wangxinxin08 已提交
1395 1396 1397 1398 1399
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                im = crop_image_sampling(im, sample_bbox, image_width,
                                         image_height, self.target_size)
1400 1401 1402 1403 1404
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1405 1406 1407
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1408 1409
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1410 1411 1412 1413
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
Q
qingqing01 已提交
1414 1415
            return sample

W
wangxinxin08 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        else:
            for sampler in self.batch_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = generate_sample_bbox_square(
                        sampler, image_width, image_height)
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
                sample_bbox = clip_bbox(sample_bbox)
Q
qingqing01 已提交
1433

W
wangxinxin08 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                # sampling bbox according the bbox area
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1448

W
wangxinxin08 已提交
1449 1450 1451 1452 1453 1454 1455 1456
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                xmin = int(sample_bbox[0] * image_width)
                xmax = int(sample_bbox[2] * image_width)
                ymin = int(sample_bbox[1] * image_height)
                ymax = int(sample_bbox[3] * image_height)
                im = im[ymin:ymax, xmin:xmax]
1457 1458 1459 1460 1461
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1462 1463 1464
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1465 1466
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1467 1468 1469 1470 1471
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
            return sample
Q
qingqing01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495


@register_op
class RandomCrop(BaseOperator):
    """Random crop image and bboxes.
    Args:
        aspect_ratio (list): aspect ratio of cropped region.
            in [min, max] format.
        thresholds (list): iou thresholds for decide a valid bbox crop.
        scaling (list): ratio between a cropped region and the original image.
             in [min, max] format.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

    def __init__(self,
                 aspect_ratio=[.5, 2.],
                 thresholds=[.0, .1, .3, .5, .7, .9],
                 scaling=[.3, 1.],
                 num_attempts=50,
                 allow_no_crop=True,
                 cover_all_box=False,
Z
zhiboniu 已提交
1496
                 is_mask_crop=False,
W
Wenyu 已提交
1497 1498
                 ioumode="iou",
                 prob=1.0):
Q
qingqing01 已提交
1499 1500 1501 1502 1503 1504 1505 1506
        super(RandomCrop, self).__init__()
        self.aspect_ratio = aspect_ratio
        self.thresholds = thresholds
        self.scaling = scaling
        self.num_attempts = num_attempts
        self.allow_no_crop = allow_no_crop
        self.cover_all_box = cover_all_box
        self.is_mask_crop = is_mask_crop
Z
zhiboniu 已提交
1507
        self.ioumode = ioumode
W
Wenyu 已提交
1508
        self.prob = prob
Q
qingqing01 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

    def crop_segms(self, segms, valid_ids, crop, height, width):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        crop_segms = []
        for id in valid_ids:
            segm = segms[id]
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                logging.getLogger("shapely").setLevel(logging.WARNING)
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    def set_fake_bboxes(self, sample):
        sample['gt_bbox'] = np.array(
            [
                [32, 32, 128, 128],
                [32, 32, 128, 256],
                [32, 64, 128, 128],
                [32, 64, 128, 256],
                [64, 64, 128, 256],
                [64, 64, 256, 256],
                [64, 32, 128, 256],
                [64, 32, 128, 256],
                [96, 32, 128, 256],
                [96, 32, 128, 256],
            ],
            dtype=np.float32)
        sample['gt_class'] = np.array(
            [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]], np.int32)
        return sample

W
wangxinxin08 已提交
1598
    def apply(self, sample, context=None):
W
Wenyu 已提交
1599 1600 1601
        if random.random() > self.prob:
            return sample

1602 1603 1604 1605
        if 'gt_bbox' not in sample:
            # only used in semi-det as unsup data
            sample = self.set_fake_bboxes(sample)
            sample = self.random_crop(sample, fake_bboxes=True)
1606 1607
            del sample['gt_bbox']
            del sample['gt_class']
1608 1609
            return sample

Q
qingqing01 已提交
1610 1611
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample
1612 1613
        sample = self.random_crop(sample)
        return sample
Q
qingqing01 已提交
1614

1615
    def random_crop(self, sample, fake_bboxes=False):
W
wangxinxin08 已提交
1616
        h, w = sample['image'].shape[:2]
Q
qingqing01 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
        gt_bbox = sample['gt_bbox']

        # NOTE Original method attempts to generate one candidate for each
        # threshold then randomly sample one from the resulting list.
        # Here a short circuit approach is taken, i.e., randomly choose a
        # threshold and attempt to find a valid crop, and simply return the
        # first one found.
        # The probability is not exactly the same, kinda resembling the
        # "Monty Hall" problem. Actually carrying out the attempts will affect
        # observability (just like opening doors in the "Monty Hall" game).
        thresholds = list(self.thresholds)
        if self.allow_no_crop:
            thresholds.append('no_crop')
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            if thresh == 'no_crop':
                return sample

            found = False
            for i in range(self.num_attempts):
                scale = np.random.uniform(*self.scaling)
                if self.aspect_ratio is not None:
                    min_ar, max_ar = self.aspect_ratio
                    aspect_ratio = np.random.uniform(
                        max(min_ar, scale**2), min(max_ar, scale**-2))
                    h_scale = scale / np.sqrt(aspect_ratio)
                    w_scale = scale * np.sqrt(aspect_ratio)
                else:
                    h_scale = np.random.uniform(*self.scaling)
                    w_scale = np.random.uniform(*self.scaling)
                crop_h = h * h_scale
                crop_w = w * w_scale
                if self.aspect_ratio is None:
                    if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
                        continue

                crop_h = int(crop_h)
                crop_w = int(crop_w)
                crop_y = np.random.randint(0, h - crop_h)
                crop_x = np.random.randint(0, w - crop_w)
                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
Z
zhiboniu 已提交
1659 1660 1661 1662 1663 1664 1665 1666
                if self.ioumode == "iof":
                    iou = self._gtcropiou_matrix(
                        gt_bbox, np.array(
                            [crop_box], dtype=np.float32))
                elif self.ioumode == "iou":
                    iou = self._iou_matrix(
                        gt_bbox, np.array(
                            [crop_box], dtype=np.float32))
Q
qingqing01 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys
W
wangxinxin08 已提交
1704 1705 1706 1707 1708 1709 1710

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

Q
qingqing01 已提交
1711
                sample['image'] = self._crop_image(sample['image'], crop_box)
1712 1713 1714
                if fake_bboxes == True:
                    return sample

Q
qingqing01 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
1725 1726 1727 1728 1729

                if 'difficult' in sample:
                    sample['difficult'] = np.take(
                        sample['difficult'], valid_ids, axis=0)

Z
zhiboniu 已提交
1730 1731 1732 1733
                if 'gt_joints' in sample:
                    sample['gt_joints'] = self._crop_joints(sample['gt_joints'],
                                                            crop_box)

Q
qingqing01 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                return sample

        return sample

    def _iou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_o + 1e-10)

Z
zhiboniu 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def _gtcropiou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_a + 1e-10)

Q
qingqing01 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    def _crop_box_with_center_constraint(self, box, crop):
        cropped_box = box.copy()

        cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
        cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
        cropped_box[:, :2] -= crop[:2]
        cropped_box[:, 2:] -= crop[:2]

        centers = (box[:, :2] + box[:, 2:]) / 2
        valid = np.logical_and(crop[:2] <= centers,
                               centers < crop[2:]).all(axis=1)
        valid = np.logical_and(
            valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))

        return cropped_box, np.where(valid)[0]

    def _crop_image(self, img, crop):
        x1, y1, x2, y2 = crop
        return img[y1:y2, x1:x2, :]

W
wangxinxin08 已提交
1778 1779 1780
    def _crop_segm(self, segm, crop):
        x1, y1, x2, y2 = crop
        return segm[:, y1:y2, x1:x2]
Q
qingqing01 已提交
1781

Z
zhiboniu 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
    def _crop_joints(self, joints, crop):
        x1, y1, x2, y2 = crop
        joints[joints[..., 0] > x2, :] = 0
        joints[joints[..., 1] > y2, :] = 0
        joints[joints[..., 0] < x1, :] = 0
        joints[joints[..., 1] < y1, :] = 0
        joints[..., 0] -= x1
        joints[..., 1] -= y1
        return joints

Q
qingqing01 已提交
1792 1793 1794 1795 1796 1797

@register_op
class RandomScaledCrop(BaseOperator):
    """Resize image and bbox based on long side (with optional random scaling),
       then crop or pad image to target size.
    Args:
1798
        target_size (int|list): target size, "hw" format.
Q
qingqing01 已提交
1799 1800
        scale_range (list): random scale range.
        interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
1801 1802
        fill_value (float|list|tuple): color value used to fill the canvas,
            in RGB order.
Q
qingqing01 已提交
1803 1804 1805
    """

    def __init__(self,
1806
                 target_size=512,
Q
qingqing01 已提交
1807
                 scale_range=[.1, 2.],
1808 1809
                 interp=cv2.INTER_LINEAR,
                 fill_value=(123.675, 116.28, 103.53)):
Q
qingqing01 已提交
1810
        super(RandomScaledCrop, self).__init__()
1811 1812 1813 1814 1815 1816
        assert isinstance(target_size, (
            Integral, Sequence)), "target_size must be Integer, List or Tuple"
        if isinstance(target_size, Integral):
            target_size = [target_size, ] * 2

        self.target_size = target_size
Q
qingqing01 已提交
1817 1818
        self.scale_range = scale_range
        self.interp = interp
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
        assert isinstance(fill_value, (Number, Sequence)), \
            "fill value must be either float or sequence"
        if isinstance(fill_value, Number):
            fill_value = (fill_value, ) * 3
        if not isinstance(fill_value, tuple):
            fill_value = tuple(fill_value)
        self.fill_value = fill_value

    def apply_image(self, img, output_size, offset_x, offset_y):
        th, tw = self.target_size
        rh, rw = output_size
        img = cv2.resize(
            img, (rw, rh), interpolation=self.interp).astype(np.float32)
        canvas = np.ones([th, tw, 3], dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[:min(th, rh), :min(tw, rw)] = \
            img[offset_y:offset_y + th, offset_x:offset_x + tw]
        return canvas

    def apply_bbox(self, gt_bbox, gt_class, scale, offset_x, offset_y):
        th, tw = self.target_size
        shift_array = np.array(
            [
                offset_x,
                offset_y,
            ] * 2, dtype=np.float32)
        boxes = gt_bbox * scale - shift_array
        boxes[:, 0::2] = np.clip(boxes[:, 0::2], 0, tw)
        boxes[:, 1::2] = np.clip(boxes[:, 1::2], 0, th)
        # filter boxes with no area
        area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
        valid = (area > 1.).nonzero()[0]
        return boxes[valid], gt_class[valid], valid

    def apply_segm(self, segms, output_size, offset_x, offset_y, valid=None):
        th, tw = self.target_size
        rh, rw = output_size
        out_segms = []
        for segm in segms:
            segm = cv2.resize(segm, (rw, rh), interpolation=cv2.INTER_NEAREST)
            segm = segm.astype(np.float32)
            canvas = np.zeros([th, tw], dtype=segm.dtype)
            canvas[:min(th, rh), :min(tw, rw)] = \
                segm[offset_y:offset_y + th, offset_x:offset_x + tw]
            out_segms.append(canvas)
        out_segms = np.stack(out_segms)
        return out_segms if valid is None else out_segms[valid]
Q
qingqing01 已提交
1866

W
wangxinxin08 已提交
1867 1868 1869
    def apply(self, sample, context=None):
        img = sample['image']
        h, w = img.shape[:2]
Q
qingqing01 已提交
1870
        random_scale = np.random.uniform(*self.scale_range)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        target_scale_size = [t * random_scale for t in self.target_size]
        # Compute actual rescaling applied to image.
        scale = min(target_scale_size[0] / h, target_scale_size[1] / w)
        output_size = [int(round(h * scale)), int(round(w * scale))]
        # get offset
        offset_x = int(
            max(0, np.random.uniform(0., output_size[1] - self.target_size[1])))
        offset_y = int(
            max(0, np.random.uniform(0., output_size[0] - self.target_size[0])))

        # apply to image
        sample['image'] = self.apply_image(img, output_size, offset_x, offset_y)

        # apply to bbox
        valid = None
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'], sample['gt_class'], valid = self.apply_bbox(
                sample['gt_bbox'], sample['gt_class'], scale, offset_x,
                offset_y)

        # apply to segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            sample['gt_segm'] = self.apply_segm(sample['gt_segm'], output_size,
                                                offset_x, offset_y, valid)

        sample['im_shape'] = np.asarray(output_size, dtype=np.float32)
        scale_factor = sample['scale_factor']
W
wangxinxin08 已提交
1898 1899 1900 1901
        sample['scale_factor'] = np.asarray(
            [scale_factor[0] * scale, scale_factor[1] * scale],
            dtype=np.float32)

Q
qingqing01 已提交
1902 1903 1904 1905
        return sample


@register_op
W
wangxinxin08 已提交
1906 1907
class Cutmix(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
1908
        """
W
wangxinxin08 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
        Cutmix image and gt_bbbox/gt_score
        Args:
             alpha (float): alpha parameter of beta distribute
             beta (float): beta parameter of beta distribute
        """
        super(Cutmix, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
1922

W
wangxinxin08 已提交
1923 1924 1925 1926 1927
    def apply_image(self, img1, img2, factor):
        """ _rand_bbox """
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        cut_rat = np.sqrt(1. - factor)
Q
qingqing01 已提交
1928

1929 1930
        cut_w = np.int32(w * cut_rat)
        cut_h = np.int32(h * cut_rat)
W
wangxinxin08 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

        # uniform
        cx = np.random.randint(w)
        cy = np.random.randint(h)

        bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
        bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
        bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
        bby2 = np.clip(cy + cut_h // 2, 0, h - 1)

W
wangguanzhong 已提交
1941 1942
        img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
        img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
W
wangxinxin08 已提交
1943
            img1.astype('float32')
W
wangguanzhong 已提交
1944 1945
        img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
        img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
W
wangxinxin08 已提交
1946
            img2.astype('float32')
W
wangguanzhong 已提交
1947 1948
        img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
        return img_1_pad
W
wangxinxin08 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        assert len(sample) == 2, 'cutmix need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        img1 = sample[0]['image']
        img2 = sample[1]['image']
        img = self.apply_image(img1, img2, factor)
        gt_bbox1 = sample[0]['gt_bbox']
        gt_bbox2 = sample[1]['gt_bbox']
        gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
        gt_class1 = sample[0]['gt_class']
        gt_class2 = sample[1]['gt_class']
        gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
W
wangguanzhong 已提交
1971 1972
        gt_score1 = np.ones_like(sample[0]['gt_class'])
        gt_score2 = np.ones_like(sample[1]['gt_class'])
W
wangxinxin08 已提交
1973 1974
        gt_score = np.concatenate(
            (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
W
wangguanzhong 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        result = copy.deepcopy(sample[0])
        result['image'] = img
        result['gt_bbox'] = gt_bbox
        result['gt_score'] = gt_score
        result['gt_class'] = gt_class
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult
        return result
Q
qingqing01 已提交
1992 1993 1994


@register_op
W
wangxinxin08 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
class Mixup(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ Mixup image and gt_bbbox/gt_score
        Args:
            alpha (float): alpha parameter of beta distribute
            beta (float): beta parameter of beta distribute
        """
        super(Mixup, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
2009

W
wangxinxin08 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    def apply_image(self, img1, img2, factor):
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        img = np.zeros((h, w, img1.shape[2]), 'float32')
        img[:img1.shape[0], :img1.shape[1], :] = \
            img1.astype('float32') * factor
        img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)
        return img.astype('uint8')

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
Q
qingqing01 已提交
2022 2023
            return sample

W
wangxinxin08 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        assert len(sample) == 2, 'mixup need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
        result = copy.deepcopy(sample[0])
        result['image'] = im
        # apply bbox and score
        if 'gt_bbox' in sample[0]:
            gt_bbox1 = sample[0]['gt_bbox']
            gt_bbox2 = sample[1]['gt_bbox']
            gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
            result['gt_bbox'] = gt_bbox
        if 'gt_class' in sample[0]:
            gt_class1 = sample[0]['gt_class']
            gt_class2 = sample[1]['gt_class']
            gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
            result['gt_class'] = gt_class

            gt_score1 = np.ones_like(sample[0]['gt_class'])
            gt_score2 = np.ones_like(sample[1]['gt_class'])
            gt_score = np.concatenate(
                (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
S
shangliang Xu 已提交
2051
            result['gt_score'] = gt_score.astype('float32')
W
wangxinxin08 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult

G
George Ni 已提交
2064 2065 2066 2067 2068
        if 'gt_ide' in sample[0]:
            gt_ide1 = sample[0]['gt_ide']
            gt_ide2 = sample[1]['gt_ide']
            gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
            result['gt_ide'] = gt_ide
W
wangxinxin08 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
        return result


@register_op
class NormalizeBox(BaseOperator):
    """Transform the bounding box's coornidates to [0,1]."""

    def __init__(self):
        super(NormalizeBox, self).__init__()

    def apply(self, sample, context):
        im = sample['image']
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
        if 'gt_bbox' in sample.keys():
            gt_bbox = sample['gt_bbox']
            height, width, _ = im.shape
            for i in range(gt_bbox.shape[0]):
                gt_bbox[i][0] = gt_bbox[i][0] / width
                gt_bbox[i][1] = gt_bbox[i][1] / height
                gt_bbox[i][2] = gt_bbox[i][2] / width
                gt_bbox[i][3] = gt_bbox[i][3] / height
            sample['gt_bbox'] = gt_bbox

            if 'gt_keypoint' in sample.keys():
                gt_keypoint = sample['gt_keypoint']
W
wangxinxin08 已提交
2093

2094 2095 2096 2097 2098 2099
                for i in range(gt_keypoint.shape[1]):
                    if i % 2:
                        gt_keypoint[:, i] = gt_keypoint[:, i] / height
                    else:
                        gt_keypoint[:, i] = gt_keypoint[:, i] / width
                sample['gt_keypoint'] = gt_keypoint
W
wangxinxin08 已提交
2100

2101 2102 2103
            return sample
        else:
            return sample
W
wangxinxin08 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115


@register_op
class BboxXYXY2XYWH(BaseOperator):
    """
    Convert bbox XYXY format to XYWH format.
    """

    def __init__(self):
        super(BboxXYXY2XYWH, self).__init__()

    def apply(self, sample, context=None):
2116 2117 2118 2119 2120 2121 2122 2123
        if 'gt_bbox' in sample.keys():
            bbox = sample['gt_bbox']
            bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
            bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
            sample['gt_bbox'] = bbox
            return sample
        else:
            return sample
W
wangxinxin08 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135


@register_op
class PadBox(BaseOperator):
    def __init__(self, num_max_boxes=50):
        """
        Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
        Args:
            num_max_boxes (int): the max number of bboxes
        """
        self.num_max_boxes = num_max_boxes
        super(PadBox, self).__init__()
Q
qingqing01 已提交
2136

W
wangxinxin08 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        gt_num = min(self.num_max_boxes, len(bbox))
        num_max = self.num_max_boxes
        # fields = context['fields'] if context else []
        pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
        if gt_num > 0:
            pad_bbox[:gt_num, :] = bbox[:gt_num, :]
        sample['gt_bbox'] = pad_bbox
        if 'gt_class' in sample:
            pad_class = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
            sample['gt_class'] = pad_class
        if 'gt_score' in sample:
            pad_score = np.zeros((num_max, ), dtype=np.float32)
            if gt_num > 0:
                pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
            sample['gt_score'] = pad_score
        # in training, for example in op ExpandImage,
        # the bbox and gt_class is expandded, but the difficult is not,
        # so, judging by it's length
        if 'difficult' in sample:
            pad_diff = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
            sample['difficult'] = pad_diff
        if 'is_crowd' in sample:
            pad_crowd = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
            sample['is_crowd'] = pad_crowd
G
George Ni 已提交
2170 2171 2172 2173 2174
        if 'gt_ide' in sample:
            pad_ide = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
            sample['gt_ide'] = pad_ide
Q
qingqing01 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
        return sample


@register_op
class DebugVisibleImage(BaseOperator):
    """
    In debug mode, visualize images according to `gt_box`.
    (Currently only supported when not cropping and flipping image.)
    """

    def __init__(self, output_dir='output/debug', is_normalized=False):
        super(DebugVisibleImage, self).__init__()
        self.is_normalized = is_normalized
        self.output_dir = output_dir
        if not os.path.isdir(output_dir):
            os.makedirs(output_dir)
        if not isinstance(self.is_normalized, bool):
            raise TypeError("{}: input type is invalid.".format(self))

W
wangxinxin08 已提交
2194
    def apply(self, sample, context=None):
2195 2196
        image = Image.fromarray(sample['image'].astype(np.uint8))
        out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
Q
qingqing01 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        width = sample['w']
        height = sample['h']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        draw = ImageDraw.Draw(image)
        for i in range(gt_bbox.shape[0]):
            if self.is_normalized:
                gt_bbox[i][0] = gt_bbox[i][0] * width
                gt_bbox[i][1] = gt_bbox[i][1] * height
                gt_bbox[i][2] = gt_bbox[i][2] * width
                gt_bbox[i][3] = gt_bbox[i][3] * height

            xmin, ymin, xmax, ymax = gt_bbox[i]
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill='green')
            # draw label
            text = str(gt_class[i][0])
2217
            tw, th = imagedraw_textsize_c(draw, text)
Q
qingqing01 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']
            if self.is_normalized:
                for i in range(gt_keypoint.shape[1]):
                    if i % 2:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * height
                    else:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * width
            for i in range(gt_keypoint.shape[0]):
                keypoint = gt_keypoint[i]
                for j in range(int(keypoint.shape[0] / 2)):
                    x1 = round(keypoint[2 * j]).astype(np.int32)
                    y1 = round(keypoint[2 * j + 1]).astype(np.int32)
                    draw.ellipse(
W
wangxinxin08 已提交
2236
                        (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
Q
qingqing01 已提交
2237 2238 2239
        save_path = os.path.join(self.output_dir, out_file_name)
        image.save(save_path, quality=95)
        return sample
W
wangxinxin08 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250


@register_op
class Pad(BaseOperator):
    def __init__(self,
                 size=None,
                 size_divisor=32,
                 pad_mode=0,
                 offsets=None,
                 fill_value=(127.5, 127.5, 127.5)):
        """
2251
        Pad image to a specified size or multiple of size_divisor.
W
wangxinxin08 已提交
2252 2253 2254 2255 2256
        Args:
            size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
            size_divisor (int): size divisor, default 32
            pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
                if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
2257
            offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
W
wangxinxin08 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
            fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
        """
        super(Pad, self).__init__()

        if not isinstance(size, (int, Sequence)):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. \
                            Must be List, now is {}".format(type(size)))

        if isinstance(size, int):
            size = [size, size]

        assert pad_mode in [
            -1, 0, 1, 2
        ], 'currently only supports four modes [-1, 0, 1, 2]'
W
will-jl944 已提交
2273 2274
        if pad_mode == -1:
            assert offsets, 'if pad_mode is -1, offsets should not be None'
W
wangxinxin08 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

        self.size = size
        self.size_divisor = size_divisor
        self.pad_mode = pad_mode
        self.fill_value = fill_value
        self.offsets = offsets

    def apply_segm(self, segms, offsets, im_size, size):
        def _expand_poly(poly, x, y):
            expanded_poly = np.array(poly)
            expanded_poly[0::2] += x
            expanded_poly[1::2] += y
            return expanded_poly.tolist()

        def _expand_rle(rle, x, y, height, width, h, w):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            expanded_mask = np.full((h, w), 0).astype(mask.dtype)
            expanded_mask[y:y + height, x:x + width] = mask
            rle = mask_util.encode(
                np.array(
                    expanded_mask, order='F', dtype=np.uint8))
            return rle

        x, y = offsets
        height, width = im_size
        h, w = size
        expanded_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                expanded_segms.append(
                    [_expand_poly(poly, x, y) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                expanded_segms.append(
                    _expand_rle(segm, x, y, height, width, h, w))
        return expanded_segms

    def apply_bbox(self, bbox, offsets):
        return bbox + np.array(offsets * 2, dtype=np.float32)

    def apply_keypoint(self, keypoints, offsets):
        n = len(keypoints[0]) // 2
        return keypoints + np.array(offsets * n, dtype=np.float32)

    def apply_image(self, image, offsets, im_size, size):
        x, y = offsets
        im_h, im_w = im_size
        h, w = size
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
        return canvas

    def apply(self, sample, context=None):
        im = sample['image']
        im_h, im_w = im.shape[:2]
        if self.size:
            h, w = self.size
            assert (
F
Feng Ni 已提交
2338
                im_h <= h and im_w <= w
W
wangxinxin08 已提交
2339 2340
            ), '(h, w) of target size should be greater than (im_h, im_w)'
        else:
U
ucsk 已提交
2341 2342
            h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
            w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
W
wangxinxin08 已提交
2343 2344

        if h == im_h and w == im_w:
F
Feng Ni 已提交
2345
            sample['image'] = im.astype(np.float32)
W
wangxinxin08 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
            return sample

        if self.pad_mode == -1:
            offset_x, offset_y = self.offsets
        elif self.pad_mode == 0:
            offset_y, offset_x = 0, 0
        elif self.pad_mode == 1:
            offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
        else:
            offset_y, offset_x = h - im_h, w - im_w

        offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]

        sample['image'] = self.apply_image(im, offsets, im_size, size)

        if self.pad_mode == 0:
            return sample
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)

        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
                                                im_size, size)

        if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
            sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
                                                        offsets)

        return sample


@register_op
class Poly2Mask(BaseOperator):
    """
U
ucsk 已提交
2380 2381 2382
    gt poly to mask annotations.
    Args:
        del_poly (bool): Whether to delete poly after generating mask. Default: False.
W
wangxinxin08 已提交
2383 2384
    """

U
ucsk 已提交
2385
    def __init__(self, del_poly=False):
W
wangxinxin08 已提交
2386 2387 2388
        super(Poly2Mask, self).__init__()
        import pycocotools.mask as maskUtils
        self.maskutils = maskUtils
U
ucsk 已提交
2389
        self.del_poly = del_poly
W
wangxinxin08 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    def _poly2mask(self, mask_ann, img_h, img_w):
        if isinstance(mask_ann, list):
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
            rle = self.maskutils.merge(rles)
        elif isinstance(mask_ann['counts'], list):
            # uncompressed RLE
            rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
        else:
            # rle
            rle = mask_ann
        mask = self.maskutils.decode(rle)
        return mask

    def apply(self, sample, context=None):
        assert 'gt_poly' in sample
U
ucsk 已提交
2408
        im_h, im_w = sample['im_shape']
W
wangxinxin08 已提交
2409 2410 2411 2412 2413
        masks = [
            self._poly2mask(gt_poly, im_h, im_w)
            for gt_poly in sample['gt_poly']
        ]
        sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
U
ucsk 已提交
2414 2415 2416
        if self.del_poly:
            del (sample['gt_poly'])

W
wangxinxin08 已提交
2417
        return sample
C
cnn 已提交
2418 2419


G
George Ni 已提交
2420 2421
@register_op
class AugmentHSV(BaseOperator):
2422
    """
F
Feng Ni 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
    Augment the SV channel of image data.
    Args:
        fraction (float): the fraction for augment. Default: 0.5.
        is_bgr (bool): whether the image is BGR mode. Default: True.
        hgain (float): H channel gains
        sgain (float): S channel gains
        vgain (float): V channel gains
    """

    def __init__(self,
                 fraction=0.50,
                 is_bgr=True,
                 hgain=None,
                 sgain=None,
                 vgain=None):
G
George Ni 已提交
2438 2439 2440
        super(AugmentHSV, self).__init__()
        self.fraction = fraction
        self.is_bgr = is_bgr
F
Feng Ni 已提交
2441 2442 2443 2444
        self.hgain = hgain
        self.sgain = sgain
        self.vgain = vgain
        self.use_hsvgain = False if hgain is None else True
G
George Ni 已提交
2445 2446 2447 2448 2449 2450 2451 2452

    def apply(self, sample, context=None):
        img = sample['image']
        if self.is_bgr:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        else:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)

F
Feng Ni 已提交
2453 2454 2455 2456 2457 2458 2459 2460
        if self.use_hsvgain:
            hsv_augs = np.random.uniform(
                -1, 1, 3) * [self.hgain, self.sgain, self.vgain]
            # random selection of h, s, v
            hsv_augs *= np.random.randint(0, 2, 3)
            img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
            img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
            img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)
G
George Ni 已提交
2461

F
Feng Ni 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
        else:
            S = img_hsv[:, :, 1].astype(np.float32)
            V = img_hsv[:, :, 2].astype(np.float32)

            a = (random.random() * 2 - 1) * self.fraction + 1
            S *= a
            if a > 1:
                np.clip(S, a_min=0, a_max=255, out=S)

            a = (random.random() * 2 - 1) * self.fraction + 1
            V *= a
            if a > 1:
                np.clip(V, a_min=0, a_max=255, out=V)

            img_hsv[:, :, 1] = S.astype(np.uint8)
            img_hsv[:, :, 2] = V.astype(np.uint8)
G
George Ni 已提交
2478 2479 2480 2481 2482 2483

        if self.is_bgr:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
        else:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)

G
Guanghua Yu 已提交
2484
        sample['image'] = img.astype(np.float32)
G
George Ni 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
        return sample


@register_op
class Norm2PixelBbox(BaseOperator):
    """
    Transform the bounding box's coornidates which is in [0,1] to pixels.
    """

    def __init__(self):
        super(Norm2PixelBbox, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        height, width = sample['image'].shape[:2]
        bbox[:, 0::2] = bbox[:, 0::2] * width
        bbox[:, 1::2] = bbox[:, 1::2] * height
        sample['gt_bbox'] = bbox
        return sample


@register_op
class BboxCXCYWH2XYXY(BaseOperator):
    """
    Convert bbox CXCYWH format to XYXY format.
    [center_x, center_y, width, height] -> [x0, y0, x1, y1]
    """

    def __init__(self):
        super(BboxCXCYWH2XYXY, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox0 = sample['gt_bbox']
        bbox = bbox0.copy()

        bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
        bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
        sample['gt_bbox'] = bbox
        return sample
W
Wenyu 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535


@register_op
class RandomResizeCrop(BaseOperator):
    """Random resize and crop image and bboxes.
    Args:
        resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
        'long', resize the image's long side to the maximum of target_size, if keep_ratio is
        True and mode is 'short', resize the image's short side to the minimum of target_size.
        cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
2536
        mode (str): resize mode, `long` or `short`. Details see resizes.
W
Wenyu 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
        prob (float): probability of this op.
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): the interpolation method
        thresholds (list): iou thresholds for decide a valid bbox crop.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

Z
zhiboniu 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
    def __init__(self,
                 resizes,
                 cropsizes,
                 prob=0.5,
                 mode='short',
                 keep_ratio=True,
                 interp=cv2.INTER_LINEAR,
                 num_attempts=3,
                 cover_all_box=False,
                 allow_no_crop=False,
                 thresholds=[0.3, 0.5, 0.7],
                 is_mask_crop=False,
                 ioumode="iou"):
W
Wenyu 已提交
2560 2561 2562 2563 2564 2565
        super(RandomResizeCrop, self).__init__()

        self.resizes = resizes
        self.cropsizes = cropsizes
        self.prob = prob
        self.mode = mode
Z
zhiboniu 已提交
2566
        self.ioumode = ioumode
W
Wenyu 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

        self.resizer = Resize(0, keep_ratio=keep_ratio, interp=interp)
        self.croper = RandomCrop(
            num_attempts=num_attempts,
            cover_all_box=cover_all_box,
            thresholds=thresholds,
            allow_no_crop=allow_no_crop,
            is_mask_crop=is_mask_crop)

    def _format_size(self, size):
        if isinstance(size, Integral):
            size = (size, size)
        return size

    def apply(self, sample, context=None):
        if random.random() < self.prob:
            _resize = self._format_size(random.choice(self.resizes))
            _cropsize = self._format_size(random.choice(self.cropsizes))
            sample = self._resize(
                self.resizer,
                sample,
                size=_resize,
                mode=self.mode,
                context=context)
            sample = self._random_crop(
                self.croper, sample, size=_cropsize, context=context)
        return sample

    @staticmethod
    def _random_crop(croper, sample, size, context=None):
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        self = croper
        h, w = sample['image'].shape[:2]
        gt_bbox = sample['gt_bbox']
        cropsize = size
        min_crop = min(cropsize)
        max_crop = max(cropsize)

        thresholds = list(self.thresholds)
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            found = False
            for _ in range(self.num_attempts):

                crop_h = random.randint(min_crop, min(h, max_crop))
                crop_w = random.randint(min_crop, min(w, max_crop))

                crop_y = random.randint(0, h - crop_h)
                crop_x = random.randint(0, w - crop_w)

                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
Z
zhiboniu 已提交
2621 2622 2623 2624 2625 2626 2627 2628
                if self.ioumode == "iof":
                    iou = self._gtcropiou_matrix(
                        gt_bbox, np.array(
                            [crop_box], dtype=np.float32))
                elif self.ioumode == "iou":
                    iou = self._iou_matrix(
                        gt_bbox, np.array(
                            [crop_box], dtype=np.float32))
W
Wenyu 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
Z
zhiboniu 已提交
2684 2685 2686 2687 2688 2689 2690 2691

                if 'gt_areas' in sample:
                    sample['gt_areas'] = np.take(
                        sample['gt_areas'], valid_ids, axis=0)

                if 'gt_joints' in sample:
                    gt_joints = self._crop_joints(sample['gt_joints'], crop_box)
                    sample['gt_joints'] = gt_joints[valid_ids]
W
Wenyu 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
                return sample

        return sample

    @staticmethod
    def _resize(resizer, sample, size, mode='short', context=None):
        self = resizer
        im = sample['image']
        target_size = size

        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        # apply image
        im_shape = im.shape
        if self.keep_ratio:

            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])

            target_size_min = np.min(target_size)
            target_size_max = np.max(target_size)

            if mode == 'long':
                im_scale = min(target_size_min / im_size_min,
                               target_size_max / im_size_max)
            else:
                im_scale = max(target_size_min / im_size_min,
                               target_size_max / im_size_max)

Z
zhiboniu 已提交
2724 2725
            resize_h = int(im_scale * float(im_shape[0]) + 0.5)
            resize_w = int(im_scale * float(im_shape[1]) + 0.5)
W
Wenyu 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
        sample['image'] = im
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
2784

Z
zhiboniu 已提交
2785 2786 2787 2788 2789
        if 'gt_joints' in sample:
            sample['gt_joints'] = self.apply_joints(sample['gt_joints'],
                                                    [im_scale_x, im_scale_y],
                                                    [resize_w, resize_h])

2790 2791 2792
        return sample


2793 2794 2795 2796 2797
@register_op
class RandomSelect(BaseOperator):
    """
    Randomly choose a transformation between transforms1 and transforms2,
    and the probability of choosing transforms1 is p.
2798 2799 2800

    The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    """

    def __init__(self, transforms1, transforms2, p=0.5):
        super(RandomSelect, self).__init__()
        self.transforms1 = Compose(transforms1)
        self.transforms2 = Compose(transforms2)
        self.p = p

    def apply(self, sample, context=None):
        if random.random() < self.p:
            return self.transforms1(sample)
        return self.transforms2(sample)


2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
@register_op
class RandomSelects(BaseOperator):
    """
    Randomly choose a transformation between transforms1 and transforms2,
    and the probability of choosing transforms1 is p.

    The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py

    """

    def __init__(self, transforms_list, p=None):
        super(RandomSelects, self).__init__()
        if p is not None:
            assert isinstance(p, (list, tuple))
            assert len(transforms_list) == len(p)
        else:
            assert len(transforms_list) > 0
        self.transforms = [Compose(t) for t in transforms_list]
        self.p = p

    def apply(self, sample, context=None):
        if self.p is None:
            return random.choice(self.transforms)(sample)
        else:
            prob = random.random()
            for p, t in zip(self.p, self.transforms):
                if prob <= p:
                    return t(sample)


2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
@register_op
class RandomShortSideResize(BaseOperator):
    def __init__(self,
                 short_side_sizes,
                 max_size=None,
                 interp=cv2.INTER_LINEAR,
                 random_interp=False):
        """
        Resize the image randomly according to the short side. If max_size is not None,
        the long side is scaled according to max_size. The whole process will be keep ratio.
        Args:
            short_side_sizes (list|tuple): Image target short side size.
            max_size (int): The size of the longest side of image after resize.
            interp (int): The interpolation method.
            random_interp (bool): Whether random select interpolation method.
        """
        super(RandomShortSideResize, self).__init__()

        assert isinstance(short_side_sizes,
                          Sequence), "short_side_sizes must be List or Tuple"

        self.short_side_sizes = short_side_sizes
        self.max_size = max_size
        self.interp = interp
        self.random_interp = random_interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]

    def get_size_with_aspect_ratio(self, image_shape, size, max_size=None):
        h, w = image_shape
W
Wenyu 已提交
2880
        max_clip = False
2881 2882 2883 2884
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
W
Wenyu 已提交
2885 2886
                size = int(max_size * min_original_size / max_original_size)
                max_clip = True
2887 2888 2889 2890 2891 2892

        if (w <= h and w == size) or (h <= w and h == size):
            return (w, h)

        if w < h:
            ow = size
W
Wenyu 已提交
2893
            oh = int(round(size * h / w)) if not max_clip else max_size
2894 2895
        else:
            oh = size
W
Wenyu 已提交
2896
            ow = int(round(size * w / h)) if not max_clip else max_size
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

        return (ow, oh)

    def resize(self,
               sample,
               target_size,
               max_size=None,
               interp=cv2.INTER_LINEAR):
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        target_size = self.get_size_with_aspect_ratio(im.shape[:2], target_size,
                                                      max_size)
        im_scale_y, im_scale_x = target_size[1] / im.shape[0], target_size[
            0] / im.shape[1]

        sample['image'] = cv2.resize(im, target_size, interpolation=interp)
        sample['im_shape'] = np.asarray(target_size[::-1], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(
                sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im.shape[:2],
                                                [im_scale_x, im_scale_y])
        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                target_size,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm, target_size, interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
Z
zhiboniu 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

        if 'gt_joints' in sample:
            sample['gt_joints'] = self.apply_joints(
                sample['gt_joints'], [im_scale_x, im_scale_y], target_size)

        # apply areas
        if 'gt_areas' in sample:
            sample['gt_areas'] = self.apply_area(sample['gt_areas'],
                                                 [im_scale_x, im_scale_y])

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
        return sample

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox.astype('float32')

Z
zhiboniu 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    def apply_joints(self, joints, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        joints[..., 0] *= im_scale_x
        joints[..., 1] *= im_scale_y
        # joints[joints[..., 0] >= resize_w, :] = 0
        # joints[joints[..., 1] >= resize_h, :] = 0
        # joints[joints[..., 0] < 0, :] = 0
        # joints[joints[..., 1] < 0, :] = 0
        joints[..., 0] = np.clip(joints[..., 0], 0, resize_w)
        joints[..., 1] = np.clip(joints[..., 1], 0, resize_h)
        return joints

    def apply_area(self, area, scale):
        im_scale_x, im_scale_y = scale
        return area * im_scale_x * im_scale_y

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
            resized_poly = np.array(poly).astype('float32')
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)

            mask = mask_util.decode(rle)
            mask = cv2.resize(
                mask,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))

        return resized_segms

    def apply(self, sample, context=None):
        target_size = random.choice(self.short_side_sizes)
        interp = random.choice(
            self.interps) if self.random_interp else self.interp

        return self.resize(sample, target_size, self.max_size, interp)


Z
zhiboniu 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
@register_op
class RandomShortSideRangeResize(RandomShortSideResize):
    def __init__(self, scales, interp=cv2.INTER_LINEAR, random_interp=False):
        """
        Resize the image randomly according to the short side. If max_size is not None,
        the long side is scaled according to max_size. The whole process will be keep ratio.
        Args:
            short_side_sizes (list|tuple): Image target short side size.
            interp (int): The interpolation method.
            random_interp (bool): Whether random select interpolation method.
        """
        super(RandomShortSideRangeResize, self).__init__(scales, None, interp,
                                                         random_interp)

        assert isinstance(scales,
                          Sequence), "short_side_sizes must be List or Tuple"

        self.scales = scales

    def random_sample(self, img_scales):
        img_scale_long = [max(s) for s in img_scales]
        img_scale_short = [min(s) for s in img_scales]
        long_edge = np.random.randint(
            min(img_scale_long), max(img_scale_long) + 1)
        short_edge = np.random.randint(
            min(img_scale_short), max(img_scale_short) + 1)
        img_scale = (long_edge, short_edge)
        return img_scale

    def apply(self, sample, context=None):
        long_edge, short_edge = self.random_sample(self.short_side_sizes)
        # print("target size:{}".format((long_edge, short_edge)))
        interp = random.choice(
            self.interps) if self.random_interp else self.interp

        return self.resize(sample, short_edge, long_edge, interp)


3076 3077 3078 3079
@register_op
class RandomSizeCrop(BaseOperator):
    """
    Cut the image randomly according to `min_size` and `max_size`
U
ucsk 已提交
3080 3081 3082 3083 3084 3085 3086 3087
    Args:
        min_size (int): Min size for edges of cropped image.
        max_size (int): Max size for edges of cropped image. If it
                        is set to larger than length of the input image,
                        the output will keep the origin length.
        keep_empty (bool): Whether to keep the cropped result with no object.
                           If it is set to False, the no-object result will not
                           be returned, replaced by the original input.
3088 3089
    """

U
ucsk 已提交
3090
    def __init__(self, min_size, max_size, keep_empty=True):
3091 3092 3093
        super(RandomSizeCrop, self).__init__()
        self.min_size = min_size
        self.max_size = max_size
U
ucsk 已提交
3094
        self.keep_empty = keep_empty
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

        from paddle.vision.transforms.functional import crop as paddle_crop
        self.paddle_crop = paddle_crop

    @staticmethod
    def get_crop_params(img_shape, output_size):
        """Get parameters for ``crop`` for a random crop.
        Args:
            img_shape (list|tuple): Image's height and width.
            output_size (list|tuple): Expected output size of the crop.
        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        h, w = img_shape
        th, tw = output_size

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (h, w)))

        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th + 1)
        j = random.randint(0, w - tw + 1)
        return i, j, th, tw

    def crop(self, sample, region):
        keep_index = None
U
ucsk 已提交
3125
        # apply bbox and check whether the cropped result is valid
3126
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
U
ucsk 已提交
3127 3128
            croped_bbox = self.apply_bbox(sample['gt_bbox'], region)
            bbox = croped_bbox.reshape([-1, 2, 2])
3129 3130
            area = (bbox[:, 1, :] - bbox[:, 0, :]).prod(axis=1)
            keep_index = np.where(area > 0)[0]
U
ucsk 已提交
3131 3132 3133 3134 3135 3136 3137

            if not self.keep_empty and len(keep_index) == 0:
                # When keep_empty is set to False, cropped with no-object will
                # not be used and return the origin content.
                return sample

            sample['gt_bbox'] = croped_bbox[keep_index] if len(
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
                keep_index) > 0 else np.zeros(
                    [0, 4], dtype=np.float32)
            sample['gt_class'] = sample['gt_class'][keep_index] if len(
                keep_index) > 0 else np.zeros(
                    [0, 1], dtype=np.float32)
            if 'gt_score' in sample:
                sample['gt_score'] = sample['gt_score'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)
            if 'is_crowd' in sample:
                sample['is_crowd'] = sample['is_crowd'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)
Z
zhiboniu 已提交
3151 3152 3153
            if 'gt_areas' in sample:
                sample['gt_areas'] = np.take(
                    sample['gt_areas'], keep_index, axis=0)
3154

U
ucsk 已提交
3155 3156 3157 3158 3159
        image_shape = sample['image'].shape[:2]
        sample['image'] = self.paddle_crop(sample['image'], *region)
        sample['im_shape'] = np.array(
            sample['image'].shape[:2], dtype=np.float32)

3160 3161 3162 3163
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], region,
                                                image_shape)
U
ucsk 已提交
3164 3165
            sample['gt_poly'] = np.array(sample['gt_poly'])
            if keep_index is not None and len(keep_index) > 0:
3166
                sample['gt_poly'] = sample['gt_poly'][keep_index]
U
ucsk 已提交
3167
            sample['gt_poly'] = sample['gt_poly'].tolist()
3168 3169 3170 3171
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            i, j, h, w = region
            sample['gt_segm'] = sample['gt_segm'][:, i:i + h, j:j + w]
U
ucsk 已提交
3172
            if keep_index is not None and len(keep_index) > 0:
3173 3174
                sample['gt_segm'] = sample['gt_segm'][keep_index]

Z
zhiboniu 已提交
3175 3176 3177 3178 3179 3180
        if 'gt_joints' in sample:
            gt_joints = self._crop_joints(sample['gt_joints'], region)
            sample['gt_joints'] = gt_joints
            if keep_index is not None:
                sample['gt_joints'] = sample['gt_joints'][keep_index]

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
        return sample

    def apply_bbox(self, bbox, region):
        i, j, h, w = region
        region_size = np.asarray([w, h])
        crop_bbox = bbox - np.asarray([j, i, j, i])
        crop_bbox = np.minimum(crop_bbox.reshape([-1, 2, 2]), region_size)
        crop_bbox = crop_bbox.clip(min=0)
        return crop_bbox.reshape([-1, 4]).astype('float32')

Z
zhiboniu 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    def _crop_joints(self, joints, region):
        y1, x1, h, w = region
        x2 = x1 + w
        y2 = y1 + h
        # x1, y1, x2, y2 = crop
        joints[..., 0] -= x1
        joints[..., 1] -= y1
        joints[joints[..., 0] > w, :] = 0
        joints[joints[..., 1] > h, :] = 0
        joints[joints[..., 0] < 0, :] = 0
        joints[joints[..., 1] < 0, :] = 0
        return joints

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    def apply_segm(self, segms, region, image_shape):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        i, j, h, w = region
        crop = [j, i, j + w, i + h]
        height, width = image_shape
        crop_segms = []
        for segm in segms:
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

    def apply(self, sample, context=None):
        h = random.randint(self.min_size,
                           min(sample['image'].shape[0], self.max_size))
        w = random.randint(self.min_size,
                           min(sample['image'].shape[1], self.max_size))

        region = self.get_crop_params(sample['image'].shape[:2], [h, w])
        return self.crop(sample, region)
W
wangguanzhong 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291


@register_op
class WarpAffine(BaseOperator):
    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
3292 3293
                 shift=0.1,
                 down_ratio=4):
W
wangguanzhong 已提交
3294 3295
        """WarpAffine
        Warp affine the image
3296
        The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py
W
wangguanzhong 已提交
3297 3298 3299 3300 3301 3302 3303 3304
        """
        super(WarpAffine, self).__init__()
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift
3305
        self.down_ratio = down_ratio
W
wangguanzhong 已提交
3306 3307 3308 3309 3310 3311 3312 3313

    def apply(self, sample, context=None):
        img = sample['image']
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        h, w = img.shape[:2]

        if self.keep_res:
3314
            # True in detection eval/infer
W
wangguanzhong 已提交
3315 3316 3317 3318 3319
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)
        else:
3320
            # False in centertrack eval_mot/eval_mot
W
wangguanzhong 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        sample['image'] = inp
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345

        if not self.keep_res:
            out_h = input_h // self.down_ratio
            out_w = input_w // self.down_ratio
            trans_output = get_affine_transform(c, s, 0, [out_w, out_h])

            sample.update({
                'center': c,
                'scale': s,
                'out_height': out_h,
                'out_width': out_w,
                'inp_height': input_h,
                'inp_width': input_w,
                'trans_input': trans_input,
                'trans_output': trans_output,
            })
W
wangguanzhong 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
        return sample


@register_op
class FlipWarpAffine(BaseOperator):
    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 not_rand_crop=False,
                 scale=0.4,
                 shift=0.1,
                 flip=0.5,
                 is_scale=True,
3361 3362
                 use_random=True,
                 add_pre_img=False):
W
wangguanzhong 已提交
3363 3364 3365
        """FlipWarpAffine
        1. Random Crop
        2. Flip the image horizontal
3366 3367
        3. Warp affine the image
        4. (Optinal) Add previous image
W
wangguanzhong 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        """
        super(FlipWarpAffine, self).__init__()
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.not_rand_crop = not_rand_crop
        self.scale = scale
        self.shift = shift
        self.flip = flip
        self.is_scale = is_scale
        self.use_random = use_random
3380 3381 3382 3383 3384 3385 3386 3387
        self.add_pre_img = add_pre_img

    def __call__(self, samples, context=None):
        if self.add_pre_img:
            assert isinstance(samples, Sequence) and len(samples) == 2
            sample, pre_sample = samples[0], samples[1]
        else:
            sample = samples
W
wangguanzhong 已提交
3388 3389 3390 3391 3392 3393 3394

        img = sample['image']
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        h, w = img.shape[:2]
3395
        flipped = 0
W
wangguanzhong 已提交
3396 3397 3398 3399 3400 3401 3402

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)
        else:
3403
            # centernet training default
W
wangguanzhong 已提交
3404 3405 3406 3407 3408 3409 3410
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        if self.use_random:
            gt_bbox = sample['gt_bbox']
            if not self.not_rand_crop:
3411
                # centernet default
W
wangguanzhong 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = get_border(128, w)
                h_border = get_border(128, h)
                c[0] = np.random.randint(low=w_border, high=w - w_border)
                c[1] = np.random.randint(low=h_border, high=h - h_border)
            else:
                sf = self.scale
                cf = self.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.flip:
                img = img[:, ::-1, :]
                c[0] = w - c[0] - 1
                oldx1 = gt_bbox[:, 0].copy()
                oldx2 = gt_bbox[:, 2].copy()
                gt_bbox[:, 0] = w - oldx2 - 1
                gt_bbox[:, 2] = w - oldx1 - 1
3431
                flipped = 1
W
wangguanzhong 已提交
3432 3433 3434 3435 3436 3437 3438
            sample['gt_bbox'] = gt_bbox

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        if self.is_scale:
            inp = (inp.astype(np.float32) / 255.)
3439

W
wangguanzhong 已提交
3440 3441 3442
        sample['image'] = inp
        sample['center'] = c
        sample['scale'] = s
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

        if self.add_pre_img:
            sample['trans_input'] = trans_input

            # previous image, use same aug trans_input as current image
            pre_img = pre_sample['image']
            pre_img = cv2.cvtColor(pre_img, cv2.COLOR_RGB2BGR)
            if flipped:
                pre_img = pre_img[:, ::-1, :].copy()
            pre_inp = cv2.warpAffine(
                pre_img,
                trans_input, (input_w, input_h),
                flags=cv2.INTER_LINEAR)
            if self.is_scale:
                pre_inp = (pre_inp.astype(np.float32) / 255.)
            sample['pre_image'] = pre_inp

            # if empty gt_bbox
            if 'gt_bbox' in pre_sample and len(pre_sample['gt_bbox']) == 0:
                return sample
            pre_gt_bbox = pre_sample['gt_bbox']
            if flipped:
                pre_oldx1 = pre_gt_bbox[:, 0].copy()
                pre_oldx2 = pre_gt_bbox[:, 2].copy()
                pre_gt_bbox[:, 0] = w - pre_oldx1 - 1
                pre_gt_bbox[:, 2] = w - pre_oldx2 - 1
            sample['pre_gt_bbox'] = pre_gt_bbox

            sample['pre_gt_class'] = pre_sample['gt_class']
            sample['pre_gt_track_id'] = pre_sample['gt_track_id']
            del pre_sample

W
wangguanzhong 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
        return sample


@register_op
class CenterRandColor(BaseOperator):
    """Random color for CenterNet series models.
    Args:
        saturation (float): saturation settings.
        contrast (float): contrast settings.
        brightness (float): brightness settings.
    """

    def __init__(self, saturation=0.4, contrast=0.4, brightness=0.4):
        super(CenterRandColor, self).__init__()
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness

    def apply_saturation(self, img, img_gray):
        alpha = 1. + np.random.uniform(
            low=-self.saturation, high=self.saturation)
        self._blend(alpha, img, img_gray[:, :, None])
        return img

    def apply_contrast(self, img, img_gray):
        alpha = 1. + np.random.uniform(low=-self.contrast, high=self.contrast)
        img_mean = img_gray.mean()
        self._blend(alpha, img, img_mean)
        return img

    def apply_brightness(self, img, img_gray):
        alpha = 1 + np.random.uniform(
            low=-self.brightness, high=self.brightness)
        img *= alpha
        return img

    def _blend(self, alpha, img, img_mean):
        img *= alpha
        img_mean *= (1 - alpha)
        img += img_mean

3516
    def apply(self, sample, context=None):
W
wangguanzhong 已提交
3517 3518 3519 3520 3521
        functions = [
            self.apply_brightness,
            self.apply_contrast,
            self.apply_saturation,
        ]
3522 3523 3524

        img = sample['image']
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
W
wangguanzhong 已提交
3525 3526 3527 3528
        distortions = np.random.permutation(functions)
        for func in distortions:
            img = func(img, img_gray)
        sample['image'] = img
3529 3530 3531 3532 3533 3534 3535 3536 3537

        if 'pre_image' in sample:
            pre_img = sample['pre_image']
            pre_img_gray = cv2.cvtColor(pre_img, cv2.COLOR_BGR2GRAY)
            pre_distortions = np.random.permutation(functions)
            for func in pre_distortions:
                pre_img = func(pre_img, pre_img_gray)
            sample['pre_image'] = pre_img

W
wangguanzhong 已提交
3538
        return sample
F
Feng Ni 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577


@register_op
class Mosaic(BaseOperator):
    """ Mosaic operator for image and gt_bboxes
    The code is based on https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/data/datasets/mosaicdetection.py

    1. get mosaic coords
    2. clip bbox and get mosaic_labels
    3. random_affine augment
    4. Mixup augment as copypaste (optinal), not used in tiny/nano

    Args:
        prob (float): probability of using Mosaic, 1.0 as default
        input_dim (list[int]): input shape
        degrees (list[2]): the rotate range to apply, transform range is [min, max]
        translate (list[2]): the translate range to apply, transform range is [min, max]
        scale (list[2]): the scale range to apply, transform range is [min, max]
        shear (list[2]): the shear range to apply, transform range is [min, max]
        enable_mixup (bool): whether to enable Mixup or not
        mixup_prob (float): probability of using Mixup, 1.0 as default
        mixup_scale (list[int]): scale range of Mixup
        remove_outside_box (bool): whether remove outside boxes, False as
            default in COCO dataset, True in MOT dataset
    """

    def __init__(self,
                 prob=1.0,
                 input_dim=[640, 640],
                 degrees=[-10, 10],
                 translate=[-0.1, 0.1],
                 scale=[0.1, 2],
                 shear=[-2, 2],
                 enable_mixup=True,
                 mixup_prob=1.0,
                 mixup_scale=[0.5, 1.5],
                 remove_outside_box=False):
        super(Mosaic, self).__init__()
        self.prob = prob
F
Feng Ni 已提交
3578 3579
        if isinstance(input_dim, Integral):
            input_dim = [input_dim, input_dim]
F
Feng Ni 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
        self.input_dim = input_dim
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.enable_mixup = enable_mixup
        self.mixup_prob = mixup_prob
        self.mixup_scale = mixup_scale
        self.remove_outside_box = remove_outside_box

    def get_mosaic_coords(self, mosaic_idx, xc, yc, w, h, input_h, input_w):
        # (x1, y1, x2, y2) means coords in large image,
        # small_coords means coords in small image in mosaic aug.
        if mosaic_idx == 0:
            # top left
            x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
            small_coords = w - (x2 - x1), h - (y2 - y1), w, h
        elif mosaic_idx == 1:
            # top right
            x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
            small_coords = 0, h - (y2 - y1), min(w, x2 - x1), h
        elif mosaic_idx == 2:
            # bottom left
            x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
            small_coords = w - (x2 - x1), 0, w, min(y2 - y1, h)
        elif mosaic_idx == 3:
            # bottom right
            x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2,
                                                                   yc + h)
            small_coords = 0, 0, min(w, x2 - x1), min(y2 - y1, h)

        return (x1, y1, x2, y2), small_coords

    def random_affine_augment(self,
                              img,
                              labels=[],
                              input_dim=[640, 640],
                              degrees=[-10, 10],
                              scales=[0.1, 2],
                              shears=[-2, 2],
                              translates=[-0.1, 0.1]):
        # random rotation and scale
        degree = random.uniform(degrees[0], degrees[1])
        scale = random.uniform(scales[0], scales[1])
        assert scale > 0, "Argument scale should be positive."
        R = cv2.getRotationMatrix2D(angle=degree, center=(0, 0), scale=scale)
        M = np.ones([2, 3])

        # random shear
        shear = random.uniform(shears[0], shears[1])
        shear_x = math.tan(shear * math.pi / 180)
        shear_y = math.tan(shear * math.pi / 180)
        M[0] = R[0] + shear_y * R[1]
        M[1] = R[1] + shear_x * R[0]

        # random translation
        translate = random.uniform(translates[0], translates[1])
        translation_x = translate * input_dim[0]
        translation_y = translate * input_dim[1]
        M[0, 2] = translation_x
        M[1, 2] = translation_y

        # warpAffine
        img = cv2.warpAffine(
3644
            img, M, dsize=tuple(input_dim), borderValue=(114, 114, 114))
F
Feng Ni 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

        num_gts = len(labels)
        if num_gts > 0:
            # warp corner points
            corner_points = np.ones((4 * num_gts, 3))
            corner_points[:, :2] = labels[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
                4 * num_gts, 2)  # x1y1, x2y2, x1y2, x2y1
            # apply affine transform
            corner_points = corner_points @M.T
            corner_points = corner_points.reshape(num_gts, 8)

            # create new boxes
            corner_xs = corner_points[:, 0::2]
            corner_ys = corner_points[:, 1::2]
            new_bboxes = np.concatenate((corner_xs.min(1), corner_ys.min(1),
                                         corner_xs.max(1), corner_ys.max(1)))
            new_bboxes = new_bboxes.reshape(4, num_gts).T

            # clip boxes
            new_bboxes[:, 0::2] = np.clip(new_bboxes[:, 0::2], 0, input_dim[0])
            new_bboxes[:, 1::2] = np.clip(new_bboxes[:, 1::2], 0, input_dim[1])
            labels[:, :4] = new_bboxes

        return img, labels

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        assert len(
            sample) == 5, "Mosaic needs 5 samples, 4 for mosaic and 1 for mixup."
        if np.random.uniform(0., 1.) > self.prob:
            return sample[0]

3679
        mosaic_gt_bbox, mosaic_gt_class, mosaic_is_crowd, mosaic_difficult = [], [], [], []
F
Feng Ni 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        input_h, input_w = self.input_dim
        yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
        xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
        mosaic_img = np.full((input_h * 2, input_w * 2, 3), 114, dtype=np.uint8)

        # 1. get mosaic coords
        for mosaic_idx, sp in enumerate(sample[:4]):
            img = sp['image']
            gt_bbox = sp['gt_bbox']
            h0, w0 = img.shape[:2]
            scale = min(1. * input_h / h0, 1. * input_w / w0)
            img = cv2.resize(
                img, (int(w0 * scale), int(h0 * scale)),
                interpolation=cv2.INTER_LINEAR)
            (h, w, c) = img.shape[:3]

            # suffix l means large image, while s means small image in mosaic aug.
            (l_x1, l_y1, l_x2, l_y2), (
                s_x1, s_y1, s_x2, s_y2) = self.get_mosaic_coords(
                    mosaic_idx, xc, yc, w, h, input_h, input_w)

            mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
            padw, padh = l_x1 - s_x1, l_y1 - s_y1

            # Normalized xywh to pixel xyxy format
            _gt_bbox = gt_bbox.copy()
            if len(gt_bbox) > 0:
                _gt_bbox[:, 0] = scale * gt_bbox[:, 0] + padw
                _gt_bbox[:, 1] = scale * gt_bbox[:, 1] + padh
                _gt_bbox[:, 2] = scale * gt_bbox[:, 2] + padw
                _gt_bbox[:, 3] = scale * gt_bbox[:, 3] + padh

            mosaic_gt_bbox.append(_gt_bbox)
            mosaic_gt_class.append(sp['gt_class'])
3714 3715 3716 3717
            if 'is_crowd' in sp:
                mosaic_is_crowd.append(sp['is_crowd'])
            if 'difficult' in sp:
                mosaic_difficult.append(sp['difficult'])
F
Feng Ni 已提交
3718 3719 3720 3721 3722

        # 2. clip bbox and get mosaic_labels([gt_bbox, gt_class, is_crowd])
        if len(mosaic_gt_bbox):
            mosaic_gt_bbox = np.concatenate(mosaic_gt_bbox, 0)
            mosaic_gt_class = np.concatenate(mosaic_gt_class, 0)
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
            if mosaic_is_crowd:
                mosaic_is_crowd = np.concatenate(mosaic_is_crowd, 0)
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox,
                    mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
                    mosaic_is_crowd.astype(mosaic_gt_bbox.dtype)
                ], 1)
            elif mosaic_difficult:
                mosaic_difficult = np.concatenate(mosaic_difficult, 0)
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox,
                    mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
                    mosaic_difficult.astype(mosaic_gt_bbox.dtype)
                ], 1)
            else:
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype)
                ], 1)
F
Feng Ni 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
            if self.remove_outside_box:
                # for MOT dataset
                flag1 = mosaic_gt_bbox[:, 0] < 2 * input_w
                flag2 = mosaic_gt_bbox[:, 2] > 0
                flag3 = mosaic_gt_bbox[:, 1] < 2 * input_h
                flag4 = mosaic_gt_bbox[:, 3] > 0
                flag_all = flag1 * flag2 * flag3 * flag4
                mosaic_labels = mosaic_labels[flag_all]
            else:
                mosaic_labels[:, 0] = np.clip(mosaic_labels[:, 0], 0,
                                              2 * input_w)
                mosaic_labels[:, 1] = np.clip(mosaic_labels[:, 1], 0,
                                              2 * input_h)
                mosaic_labels[:, 2] = np.clip(mosaic_labels[:, 2], 0,
                                              2 * input_w)
                mosaic_labels[:, 3] = np.clip(mosaic_labels[:, 3], 0,
                                              2 * input_h)
        else:
            mosaic_labels = np.zeros((1, 6))

        # 3. random_affine augment
        mosaic_img, mosaic_labels = self.random_affine_augment(
            mosaic_img,
            mosaic_labels,
            input_dim=self.input_dim,
            degrees=self.degrees,
            translates=self.translate,
            scales=self.scale,
            shears=self.shear)

        # 4. Mixup augment as copypaste, https://arxiv.org/abs/2012.07177
        # optinal, not used(enable_mixup=False) in tiny/nano
        if (self.enable_mixup and not len(mosaic_labels) == 0 and
                random.random() < self.mixup_prob):
            sample_mixup = sample[4]
            mixup_img = sample_mixup['image']
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
            if 'is_crowd' in sample_mixup:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype),
                    sample_mixup['is_crowd'].astype(mosaic_labels.dtype)
                ], 1)
            elif 'difficult' in sample_mixup:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype),
                    sample_mixup['difficult'].astype(mosaic_labels.dtype)
                ], 1)
            else:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype)
                ], 1)
F
Feng Ni 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
            mosaic_img, mosaic_labels = self.mixup_augment(
                mosaic_img, mosaic_labels, self.input_dim, cp_labels, mixup_img)

        sample0 = sample[0]
        sample0['image'] = mosaic_img.astype(np.uint8)  # can not be float32
        sample0['h'] = float(mosaic_img.shape[0])
        sample0['w'] = float(mosaic_img.shape[1])
        sample0['im_shape'][0] = sample0['h']
        sample0['im_shape'][1] = sample0['w']
        sample0['gt_bbox'] = mosaic_labels[:, :4].astype(np.float32)
        sample0['gt_class'] = mosaic_labels[:, 4:5].astype(np.float32)
3805 3806 3807 3808
        if 'is_crowd' in sample[0]:
            sample0['is_crowd'] = mosaic_labels[:, 5:6].astype(np.float32)
        if 'difficult' in sample[0]:
            sample0['difficult'] = mosaic_labels[:, 5:6].astype(np.float32)
F
Feng Ni 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
        return sample0

    def mixup_augment(self, origin_img, origin_labels, input_dim, cp_labels,
                      img):
        jit_factor = random.uniform(*self.mixup_scale)
        FLIP = random.uniform(0, 1) > 0.5
        if len(img.shape) == 3:
            cp_img = np.ones(
                (input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
        else:
            cp_img = np.ones(input_dim, dtype=np.uint8) * 114

        cp_scale_ratio = min(input_dim[0] / img.shape[0],
                             input_dim[1] / img.shape[1])
        resized_img = cv2.resize(
            img, (int(img.shape[1] * cp_scale_ratio),
                  int(img.shape[0] * cp_scale_ratio)),
            interpolation=cv2.INTER_LINEAR)

        cp_img[:int(img.shape[0] * cp_scale_ratio), :int(img.shape[
            1] * cp_scale_ratio)] = resized_img

        cp_img = cv2.resize(cp_img, (int(cp_img.shape[1] * jit_factor),
                                     int(cp_img.shape[0] * jit_factor)))
        cp_scale_ratio *= jit_factor

        if FLIP:
            cp_img = cp_img[:, ::-1, :]

        origin_h, origin_w = cp_img.shape[:2]
        target_h, target_w = origin_img.shape[:2]
        padded_img = np.zeros(
            (max(origin_h, target_h), max(origin_w, target_w), 3),
            dtype=np.uint8)
        padded_img[:origin_h, :origin_w] = cp_img

        x_offset, y_offset = 0, 0
        if padded_img.shape[0] > target_h:
            y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
        if padded_img.shape[1] > target_w:
            x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
        padded_cropped_img = padded_img[y_offset:y_offset + target_h, x_offset:
                                        x_offset + target_w]

        # adjust boxes
        cp_bboxes_origin_np = cp_labels[:, :4].copy()
        cp_bboxes_origin_np[:, 0::2] = np.clip(cp_bboxes_origin_np[:, 0::2] *
                                               cp_scale_ratio, 0, origin_w)
        cp_bboxes_origin_np[:, 1::2] = np.clip(cp_bboxes_origin_np[:, 1::2] *
                                               cp_scale_ratio, 0, origin_h)

        if FLIP:
            cp_bboxes_origin_np[:, 0::2] = (
                origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1])
        cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
        if self.remove_outside_box:
            # for MOT dataset
            cp_bboxes_transformed_np[:, 0::2] -= x_offset
            cp_bboxes_transformed_np[:, 1::2] -= y_offset
        else:
            cp_bboxes_transformed_np[:, 0::2] = np.clip(
                cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w)
            cp_bboxes_transformed_np[:, 1::2] = np.clip(
                cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h)

        cls_labels = cp_labels[:, 4:5].copy()
        box_labels = cp_bboxes_transformed_np
3876 3877 3878 3879 3880
        if cp_labels.shape[-1] == 6:
            crd_labels = cp_labels[:, 5:6].copy()
            labels = np.hstack((box_labels, cls_labels, crd_labels))
        else:
            labels = np.hstack((box_labels, cls_labels))
F
Feng Ni 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
        if self.remove_outside_box:
            labels = labels[labels[:, 0] < target_w]
            labels = labels[labels[:, 2] > 0]
            labels = labels[labels[:, 1] < target_h]
            labels = labels[labels[:, 3] > 0]

        origin_labels = np.vstack((origin_labels, labels))
        origin_img = origin_img.astype(np.float32)
        origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(
            np.float32)

        return origin_img.astype(np.uint8), origin_labels


@register_op
class PadResize(BaseOperator):
    """ PadResize for image and gt_bbbox

    Args:
        target_size (list[int]): input shape
        fill_value (float): pixel value of padded image
    """

    def __init__(self, target_size, fill_value=114):
        super(PadResize, self).__init__()
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.fill_value = fill_value

    def _resize(self, img, bboxes, labels):
        ratio = min(self.target_size[0] / img.shape[0],
                    self.target_size[1] / img.shape[1])
        w, h = int(img.shape[1] * ratio), int(img.shape[0] * ratio)
        resized_img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)

        if len(bboxes) > 0:
            bboxes *= ratio
            mask = np.minimum(bboxes[:, 2] - bboxes[:, 0],
                              bboxes[:, 3] - bboxes[:, 1]) > 1
            bboxes = bboxes[mask]
            labels = labels[mask]
        return resized_img, bboxes, labels

    def _pad(self, img):
        h, w, _ = img.shape
        if h == self.target_size[0] and w == self.target_size[1]:
            return img
        padded_img = np.full(
            (self.target_size[0], self.target_size[1], 3),
            self.fill_value,
            dtype=np.uint8)
        padded_img[:h, :w] = img
        return padded_img

    def apply(self, sample, context=None):
        image = sample['image']
        bboxes = sample['gt_bbox']
        labels = sample['gt_class']
        image, bboxes, labels = self._resize(image, bboxes, labels)
        sample['image'] = self._pad(image).astype(np.float32)
        sample['gt_bbox'] = bboxes
        sample['gt_class'] = labels
        return sample
F
Feng Ni 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005


@register_op
class RandomShift(BaseOperator):
    """
    Randomly shift image

    Args:
        prob (float): probability to do random shift.
        max_shift (int): max shift pixels
        filter_thr (int): filter gt bboxes if one side is smaller than this
    """

    def __init__(self, prob=0.5, max_shift=32, filter_thr=1):
        super(RandomShift, self).__init__()
        self.prob = prob
        self.max_shift = max_shift
        self.filter_thr = filter_thr

    def calc_shift_coor(self, im_h, im_w, shift_h, shift_w):
        return [
            max(0, shift_w), max(0, shift_h), min(im_w, im_w + shift_w),
            min(im_h, im_h + shift_h)
        ]

    def apply(self, sample, context=None):
        if random.random() > self.prob:
            return sample

        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_h, im_w = im.shape[:2]
        shift_h = random.randint(-self.max_shift, self.max_shift)
        shift_w = random.randint(-self.max_shift, self.max_shift)

        gt_bbox[:, 0::2] += shift_w
        gt_bbox[:, 1::2] += shift_h
        gt_bbox[:, 0::2] = np.clip(gt_bbox[:, 0::2], 0, im_w)
        gt_bbox[:, 1::2] = np.clip(gt_bbox[:, 1::2], 0, im_h)
        gt_bbox_h = gt_bbox[:, 2] - gt_bbox[:, 0]
        gt_bbox_w = gt_bbox[:, 3] - gt_bbox[:, 1]
        keep = (gt_bbox_w > self.filter_thr) & (gt_bbox_h > self.filter_thr)
        if not keep.any():
            return sample

        gt_bbox = gt_bbox[keep]
        gt_class = gt_class[keep]

        # shift image
        coor_new = self.calc_shift_coor(im_h, im_w, shift_h, shift_w)
        # shift frame to the opposite direction
        coor_old = self.calc_shift_coor(im_h, im_w, -shift_h, -shift_w)
        canvas = np.zeros_like(im)
        canvas[coor_new[1]:coor_new[3], coor_new[0]:coor_new[2]] \
            = im[coor_old[1]:coor_old[3], coor_old[0]:coor_old[2]]

        sample['image'] = canvas
        sample['gt_bbox'] = gt_bbox
        sample['gt_class'] = gt_class
        return sample
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167


@register_op
class StrongAugImage(BaseOperator):
    def __init__(self, transforms):
        super(StrongAugImage, self).__init__()
        self.transforms = Compose(transforms)

    def apply(self, sample, context=None):
        im = sample
        im['image'] = sample['image'].astype('uint8')
        results = self.transforms(im)
        sample['image'] = results['image'].astype('uint8')
        return sample


@register_op
class RandomColorJitter(BaseOperator):
    def __init__(self,
                 prob=0.8,
                 brightness=0.4,
                 contrast=0.4,
                 saturation=0.4,
                 hue=0.1):
        super(RandomColorJitter, self).__init__()
        self.prob = prob
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            from paddle.vision.transforms import ColorJitter
            transform = ColorJitter(self.brightness, self.contrast,
                                    self.saturation, self.hue)
            sample['image'] = transform(sample['image'].astype(np.uint8))
            sample['image'] = sample['image'].astype(np.float32)
        return sample


@register_op
class RandomGrayscale(BaseOperator):
    def __init__(self, prob=0.2):
        super(RandomGrayscale, self).__init__()
        self.prob = prob

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            from paddle.vision.transforms import Grayscale
            transform = Grayscale(num_output_channels=3)
            sample['image'] = transform(sample['image'])
        return sample


@register_op
class RandomGaussianBlur(BaseOperator):
    def __init__(self, prob=0.5, sigma=[0.1, 2.0]):
        super(RandomGaussianBlur, self).__init__()
        self.prob = prob
        self.sigma = sigma

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            sigma = np.random.uniform(self.sigma[0], self.sigma[1])
            im = cv2.GaussianBlur(sample['image'], (23, 23), sigma)
            sample['image'] = im
        return sample


@register_op
class RandomErasing(BaseOperator):
    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False):
        super(RandomErasing, self).__init__()
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
        assert (ratio[0] >= 0 and
                ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert isinstance(
            value, (Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")
        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _erase(self, img, i, j, h, w, v, inplace=False):
        if not inplace:
            img = img.copy()
        img[i:i + h, j:j + w, ...] = v
        return img

    def _get_param(self, img, scale, ratio, value):
        shape = np.asarray(img).astype(np.uint8).shape
        h, w, c = shape[-3], shape[-2], shape[-1]
        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(1):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue

            if value is None:
                v = np.random.normal(size=[erase_h, erase_w, c]) * 255
            else:
                v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)
            return top, left, erase_h, erase_w, v
        return 0, 0, h, w, img

    def apply(self, sample, context=None):
        if random.random() < self.prob:
            if isinstance(self.value, Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
            im = sample['image']
            top, left, erase_h, erase_w, v = self._get_param(im, self.scale,
                                                             self.ratio, value)
            im = self._erase(im, top, left, erase_h, erase_w, v, self.inplace)
            sample['image'] = im
        return sample


@register_op
class RandomErasingCrop(BaseOperator):
    def __init__(self):
        super(RandomErasingCrop, self).__init__()
        self.transform1 = RandomErasing(
            prob=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random")
        self.transform2 = RandomErasing(
            prob=0.5, scale=(0.05, 0.2), ratio=(0.1, 6), value="random")
        self.transform3 = RandomErasing(
            prob=0.3, scale=(0.05, 0.2), ratio=(0.05, 8), value="random")

    def apply(self, sample, context=None):
        sample = self.transform1(sample)
        sample = self.transform2(sample)
        sample = self.transform3(sample)
        return sample