print_op.cc 9.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
#include <ctime>

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

#define CLOG std::cout

26 27 28
const char kForward[] = "FORWARD";
const char kBackward[] = "BACKWARD";
const char kBoth[] = "BOTH";
Y
yangyaming 已提交
29

Y
Yan Chunwei 已提交
30 31 32 33
struct Formater {
  std::string message;
  std::string name;
  std::vector<int> dims;
34
  std::type_index dtype{typeid(const char)};
Y
Yan Chunwei 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48
  framework::LoD lod;
  int summarize;
  void* data{nullptr};

  void operator()(size_t size) {
    PrintMessage();
    PrintName();
    PrintDims();
    PrintDtype();
    PrintLod();
    PrintData(size);
  }

 private:
49
  void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message << "\t"; }
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  void PrintName() {
    if (!name.empty()) {
      CLOG << "Tensor[" << name << "]" << std::endl;
    }
  }
  void PrintDims() {
    if (!dims.empty()) {
      CLOG << "\tshape: [";
      for (auto i : dims) {
        CLOG << i << ",";
      }
      CLOG << "]" << std::endl;
    }
  }
  void PrintDtype() {
65
    if (dtype.hash_code() != typeid(const char).hash_code()) {
Y
Yan Chunwei 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      CLOG << "\tdtype: " << dtype.name() << std::endl;
    }
  }
  void PrintLod() {
    if (!lod.empty()) {
      CLOG << "\tLoD: [";
      for (auto level : lod) {
        CLOG << "[ ";
        for (auto i : level) {
          CLOG << i << ",";
        }
        CLOG << " ]";
      }
      CLOG << "]" << std::endl;
    }
  }

  void PrintData(size_t size) {
    PADDLE_ENFORCE_NOT_NULL(data);
    // print float
86
    if (dtype.hash_code() == typeid(const float).hash_code()) {
Y
Yan Chunwei 已提交
87
      Display<float>(size);
88
    } else if (dtype.hash_code() == typeid(const double).hash_code()) {
Y
Yan Chunwei 已提交
89
      Display<double>(size);
90
    } else if (dtype.hash_code() == typeid(const int).hash_code()) {
Y
Yan Chunwei 已提交
91
      Display<int>(size);
92
    } else if (dtype.hash_code() == typeid(const int64_t).hash_code()) {
Y
Yan Chunwei 已提交
93
      Display<int64_t>(size);
94
    } else if (dtype.hash_code() == typeid(const bool).hash_code()) {
95 96 97
      Display<bool>(size);
    } else {
      CLOG << "\tdata: unprintable type: " << dtype.name() << std::endl;
Y
Yan Chunwei 已提交
98 99 100 101 102
    }
  }

  template <typename T>
  void Display(size_t size) {
103
    auto* d = reinterpret_cast<T*>(data);
Y
Yan Chunwei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    CLOG << "\tdata: ";
    if (summarize != -1) {
      summarize = std::min(size, (size_t)summarize);
      for (int i = 0; i < summarize; i++) {
        CLOG << d[i] << ",";
      }
    } else {
      for (size_t i = 0; i < size; i++) {
        CLOG << d[i] << ",";
      }
    }
    CLOG << std::endl;
  }
};

// TODO(ChunweiYan) there should be some other printers for TensorArray
class TensorPrintOp : public framework::OperatorBase {
 public:
  TensorPrintOp(const std::string& type,
                const framework::VariableNameMap& inputs,
                const framework::VariableNameMap& outputs,
                const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

  TensorPrintOp(const TensorPrintOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
Y
yangyaming 已提交
131
    PADDLE_THROW("Not implemented.");
Y
Yan Chunwei 已提交
132 133
  }

134 135 136
 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
Y
yangyaming 已提交
137
    const framework::Variable* in_var_ptr = nullptr;
138
    std::string phase(kForward);
Y
yangyaming 已提交
139 140 141 142 143 144 145 146 147 148
    std::string printed_var_name = "";

    auto& inputs = Inputs();
    if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) {
      in_var_ptr = scope.FindVar(Input("In"));
      printed_var_name = Inputs("In").front();
    } else if (inputs.find("In@GRAD") != inputs.end() &&
               !Inputs("In@GRAD").empty()) {
      in_var_ptr = scope.FindVar(Input("In@GRAD"));
      printed_var_name = Inputs("In@GRAD").front();
149
      phase = std::string(kBackward);
Y
yangyaming 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    } else {
      PADDLE_THROW("Unknown phase, should be forward or backward.");
    }

    PADDLE_ENFORCE_NOT_NULL(in_var_ptr);

    auto& in_tensor = in_var_ptr->Get<framework::LoDTensor>();
    auto* out_var_ptr = scope.FindVar(Output("Out"));
    auto& out_tensor = *out_var_ptr->GetMutable<framework::LoDTensor>();

    // Just copy data from input tensor to output tensor
    // output tensor share same memory with input tensor
    out_tensor.ShareDataWith(in_tensor);
    out_tensor.set_lod(in_tensor.lod());

    std::string print_phase = Attr<std::string>("print_phase");
166
    if (print_phase != phase && print_phase != std::string(kBoth)) {
Y
yangyaming 已提交
167 168 169
      return;
    }

Y
Yan Chunwei 已提交
170 171 172
    int first_n = Attr<int>("first_n");
    if (first_n > 0 && ++times_ > first_n) return;

Y
yangyaming 已提交
173 174 175
    framework::LoDTensor printed_tensor;
    printed_tensor.set_lod(in_tensor.lod());
    printed_tensor.Resize(in_tensor.dims());
Y
Yan Chunwei 已提交
176

Y
yangyaming 已提交
177 178 179 180 181
    if (platform::is_cpu_place(in_tensor.place())) {
      printed_tensor.ShareDataWith(in_tensor);
    } else {
      // copy data to cpu to print
      platform::CPUPlace place;
Y
Yi Wang 已提交
182
      framework::TensorCopy(in_tensor, place, &printed_tensor);
Y
yangyaming 已提交
183
    }
Y
Yan Chunwei 已提交
184 185

    Formater formater;
186
    formater.message = Attr<std::string>("message");
Y
Yan Chunwei 已提交
187
    if (Attr<bool>("print_tensor_name")) {
Y
yangyaming 已提交
188
      formater.name = printed_var_name;
Y
Yan Chunwei 已提交
189 190
    }
    if (Attr<bool>("print_tensor_type")) {
Y
yangyaming 已提交
191
      formater.dtype = printed_tensor.type();
Y
Yan Chunwei 已提交
192 193
    }
    if (Attr<bool>("print_tensor_shape")) {
Y
yangyaming 已提交
194 195 196
      auto& dims = printed_tensor.dims();
      formater.dims.resize(dims.size());
      for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i];
Y
Yan Chunwei 已提交
197 198
    }
    if (Attr<bool>("print_tensor_lod")) {
Y
yangyaming 已提交
199
      formater.lod = printed_tensor.lod();
Y
Yan Chunwei 已提交
200 201
    }
    formater.summarize = Attr<int>("summarize");
202
    formater.data = reinterpret_cast<void*>(printed_tensor.data<void>());
Y
yangyaming 已提交
203
    formater(printed_tensor.numel());
Y
Yan Chunwei 已提交
204 205 206 207 208 209 210 211
  }

 private:
  mutable int times_{0};
};

class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
212
  void Make() override {
Y
yangyaming 已提交
213
    AddInput("In", "Input tensor to be displayed.");
Y
Yan Chunwei 已提交
214 215
    AddAttr<int>("first_n", "Only log `first_n` number of times.");
    AddAttr<std::string>("message", "A string message to print as a prefix.");
Y
yangyaming 已提交
216
    AddAttr<int>("summarize", "Number of elements printed.");
Y
Yan Chunwei 已提交
217 218 219 220
    AddAttr<bool>("print_tensor_name", "Whether to print the tensor name.");
    AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype.");
    AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape.");
    AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod.");
Y
yangyaming 已提交
221 222 223 224
    AddAttr<std::string>(
        "print_phase",
        "(string, default 'BOTH') Which phase to display including 'FORWARD' "
        "'BACKWARD' and 'BOTH'.")
225 226 227
        .SetDefault(std::string(kBoth))
        .InEnum({std::string(kForward), std::string(kBackward),
                 std::string(kBoth)});
Y
yangyaming 已提交
228
    AddOutput("Out", "Output tensor with same data as input tensor.");
Y
Yan Chunwei 已提交
229
    AddComment(R"DOC(
Y
yangyaming 已提交
230
Creates a print op that will print when a tensor is accessed.
Y
Yan Chunwei 已提交
231

Y
yangyaming 已提交
232 233 234
Wraps the tensor passed in so that whenever that a tensor is accessed,
the message `message` is printed, along with the current value of the
tensor `t`.)DOC");
Y
Yan Chunwei 已提交
235 236 237
  }
};

Y
yangyaming 已提交
238
class InferShapeForward : public framework::InferShapeBase {
Y
Yan Chunwei 已提交
239 240
 public:
  void operator()(framework::InferShapeContext* context) const override {
Y
yangyaming 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253
    PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null.");
    context->ShareLoD("In", /*->*/ "Out");
    context->SetOutputDim("Out", context->GetInputDim("In"));
  }
};

class InferShapeBackward : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("In@GRAD"),
                   "Input(In@GRAD) should not be null.");
    context->ShareLoD("In@GRAD", /*->*/ "Out");
    context->SetOutputDim("Out", context->GetInputDim("In@GRAD"));
Y
Yan Chunwei 已提交
254 255 256 257 258 259 260 261 262
  }
};

class InferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {}
};

Y
yangyaming 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class PrintOpProtoAndCheckGradOpMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("print_grad");
    op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out"));
    op_desc_ptr->SetOutput("Out", InputGrad("In"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

Y
Yan Chunwei 已提交
278 279 280
}  // namespace operators
}  // namespace paddle

Y
yangyaming 已提交
281 282 283 284 285 286
namespace ops = paddle::operators;

REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker,
                  ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward,
                  ops::InferVarType);
REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward);