callbacks.py 12.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
20
import sys
K
Kaipeng Deng 已提交
21
import datetime
22
import six
23 24
import copy
import json
K
Kaipeng Deng 已提交
25

26
import paddle
W
wangguanzhong 已提交
27
import paddle.distributed as dist
K
Kaipeng Deng 已提交
28 29

from ppdet.utils.checkpoint import save_model
30
from ppdet.metrics import get_infer_results
K
Kaipeng Deng 已提交
31 32

from ppdet.utils.logger import setup_logger
33
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
34

S
shangliang Xu 已提交
35 36 37 38
__all__ = [
    'Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer',
    'VisualDLWriter', 'SniperProposalsGenerator'
]
K
Kaipeng Deng 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


class Callback(object):
    def __init__(self, model):
        self.model = model

    def on_step_begin(self, status):
        pass

    def on_step_end(self, status):
        pass

    def on_epoch_begin(self, status):
        pass

    def on_epoch_end(self, status):
        pass

57 58 59 60 61 62
    def on_train_begin(self, status):
        pass

    def on_train_end(self, status):
        pass

K
Kaipeng Deng 已提交
63 64 65

class ComposeCallback(object):
    def __init__(self, callbacks):
66 67 68 69
        callbacks = [c for c in list(callbacks) if c is not None]
        for c in callbacks:
            assert isinstance(
                c, Callback), "callback should be subclass of Callback"
K
Kaipeng Deng 已提交
70 71 72
        self._callbacks = callbacks

    def on_step_begin(self, status):
73 74
        for c in self._callbacks:
            c.on_step_begin(status)
K
Kaipeng Deng 已提交
75 76

    def on_step_end(self, status):
77 78
        for c in self._callbacks:
            c.on_step_end(status)
K
Kaipeng Deng 已提交
79 80

    def on_epoch_begin(self, status):
81 82
        for c in self._callbacks:
            c.on_epoch_begin(status)
K
Kaipeng Deng 已提交
83 84

    def on_epoch_end(self, status):
85 86
        for c in self._callbacks:
            c.on_epoch_end(status)
K
Kaipeng Deng 已提交
87

88 89 90 91 92 93 94 95
    def on_train_begin(self, status):
        for c in self._callbacks:
            c.on_train_begin(status)

    def on_train_end(self, status):
        for c in self._callbacks:
            c.on_train_end(status)

K
Kaipeng Deng 已提交
96 97 98 99 100 101

class LogPrinter(Callback):
    def __init__(self, model):
        super(LogPrinter, self).__init__(model)

    def on_step_end(self, status):
W
wangguanzhong 已提交
102
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
K
Kaipeng Deng 已提交
103 104
            mode = status['mode']
            if mode == 'train':
K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112
                epoch_id = status['epoch_id']
                step_id = status['step_id']
                steps_per_epoch = status['steps_per_epoch']
                training_staus = status['training_staus']
                batch_time = status['batch_time']
                data_time = status['data_time']

                epoches = self.model.cfg.epoch
K
Kaipeng Deng 已提交
113 114
                batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
                ))]['batch_size']
K
Kaipeng Deng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

                logs = training_staus.log()
                space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd'
                if step_id % self.model.cfg.log_iter == 0:
                    eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
                    eta_sec = eta_steps * batch_time.global_avg
                    eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
                    ips = float(batch_size) / batch_time.avg
                    fmt = ' '.join([
                        'Epoch: [{}]',
                        '[{' + space_fmt + '}/{}]',
                        'learning_rate: {lr:.6f}',
                        '{meters}',
                        'eta: {eta}',
                        'batch_cost: {btime}',
                        'data_cost: {dtime}',
                        'ips: {ips:.4f} images/s',
                    ])
                    fmt = fmt.format(
                        epoch_id,
                        step_id,
                        steps_per_epoch,
                        lr=status['learning_rate'],
                        meters=logs,
                        eta=eta_str,
                        btime=str(batch_time),
                        dtime=str(data_time),
                        ips=ips)
                    logger.info(fmt)
F
Feng Ni 已提交
144 145 146 147
            if mode == 'eval':
                step_id = status['step_id']
                if step_id % 100 == 0:
                    logger.info("Eval iter: {}".format(step_id))
K
Kaipeng Deng 已提交
148 149

    def on_epoch_end(self, status):
W
wangguanzhong 已提交
150
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
K
Kaipeng Deng 已提交
151 152
            mode = status['mode']
            if mode == 'eval':
K
Kaipeng Deng 已提交
153 154 155 156 157 158 159 160 161
                sample_num = status['sample_num']
                cost_time = status['cost_time']
                logger.info('Total sample number: {}, averge FPS: {}'.format(
                    sample_num, sample_num / cost_time))


class Checkpointer(Callback):
    def __init__(self, model):
        super(Checkpointer, self).__init__(model)
W
wangxinxin08 已提交
162
        cfg = self.model.cfg
163 164 165
        self.best_ap = 0.
        self.save_dir = os.path.join(self.model.cfg.save_dir,
                                     self.model.cfg.filename)
166 167 168 169
        if hasattr(self.model.model, 'student_model'):
            self.weight = self.model.model.student_model
        else:
            self.weight = self.model.model
K
Kaipeng Deng 已提交
170 171

    def on_epoch_end(self, status):
K
Kaipeng Deng 已提交
172 173
        # Checkpointer only performed during training
        mode = status['mode']
174 175 176
        epoch_id = status['epoch_id']
        weight = None
        save_name = None
W
wangguanzhong 已提交
177
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
178 179
            if mode == 'train':
                end_epoch = self.model.cfg.epoch
180 181 182
                if (
                        epoch_id + 1
                ) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
183 184
                    save_name = str(
                        epoch_id) if epoch_id != end_epoch - 1 else "model_final"
S
shangliang Xu 已提交
185
                    weight = self.weight.state_dict()
186 187 188 189
            elif mode == 'eval':
                if 'save_best_model' in status and status['save_best_model']:
                    for metric in self.model._metrics:
                        map_res = metric.get_results()
190 191 192 193 194 195
                        if 'bbox' in map_res:
                            key = 'bbox'
                        elif 'keypoint' in map_res:
                            key = 'keypoint'
                        else:
                            key = 'mask'
196
                        if key not in map_res:
197
                            logger.warning("Evaluation results empty, this may be due to " \
198 199 200
                                        "training iterations being too few or not " \
                                        "loading the correct weights.")
                            return
201 202 203
                        if map_res[key][0] > self.best_ap:
                            self.best_ap = map_res[key][0]
                            save_name = 'best_model'
S
shangliang Xu 已提交
204
                            weight = self.weight.state_dict()
205 206 207
                        logger.info("Best test {} ap is {:0.3f}.".format(
                            key, self.best_ap))
            if weight:
S
shangliang Xu 已提交
208
                if self.model.use_ema:
S
shangliang Xu 已提交
209 210 211 212 213 214 215 216
                    # save model and ema_model
                    save_model(
                        status['weight'],
                        self.model.optimizer,
                        self.save_dir,
                        save_name,
                        epoch_id + 1,
                        ema_model=weight)
S
shangliang Xu 已提交
217
                else:
S
shangliang Xu 已提交
218 219
                    save_model(weight, self.model.optimizer, self.save_dir,
                               save_name, epoch_id + 1)
220 221 222 223 224 225 226 227 228 229 230 231


class WiferFaceEval(Callback):
    def __init__(self, model):
        super(WiferFaceEval, self).__init__(model)

    def on_epoch_begin(self, status):
        assert self.model.mode == 'eval', \
            "WiferFaceEval can only be set during evaluation"
        for metric in self.model._metrics:
            metric.update(self.model.model)
        sys.exit()
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248


class VisualDLWriter(Callback):
    """
    Use VisualDL to log data or image
    """

    def __init__(self, model):
        super(VisualDLWriter, self).__init__(model)

        assert six.PY3, "VisualDL requires Python >= 3.5"
        try:
            from visualdl import LogWriter
        except Exception as e:
            logger.error('visualdl not found, plaese install visualdl. '
                         'for example: `pip install visualdl`.')
            raise e
M
Manuel Garcia 已提交
249 250
        self.vdl_writer = LogWriter(
            model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar'))
251 252 253 254 255 256 257
        self.vdl_loss_step = 0
        self.vdl_mAP_step = 0
        self.vdl_image_step = 0
        self.vdl_image_frame = 0

    def on_step_end(self, status):
        mode = status['mode']
W
wangguanzhong 已提交
258
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
259 260 261 262 263
            if mode == 'train':
                training_staus = status['training_staus']
                for loss_name, loss_value in training_staus.get().items():
                    self.vdl_writer.add_scalar(loss_name, loss_value,
                                               self.vdl_loss_step)
264
                self.vdl_loss_step += 1
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
            elif mode == 'test':
                ori_image = status['original_image']
                result_image = status['result_image']
                self.vdl_writer.add_image(
                    "original/frame_{}".format(self.vdl_image_frame), ori_image,
                    self.vdl_image_step)
                self.vdl_writer.add_image(
                    "result/frame_{}".format(self.vdl_image_frame),
                    result_image, self.vdl_image_step)
                self.vdl_image_step += 1
                # each frame can display ten pictures at most.
                if self.vdl_image_step % 10 == 0:
                    self.vdl_image_step = 0
                    self.vdl_image_frame += 1

    def on_epoch_end(self, status):
        mode = status['mode']
W
wangguanzhong 已提交
282
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
283 284 285 286 287 288 289
            if mode == 'eval':
                for metric in self.model._metrics:
                    for key, map_value in metric.get_results().items():
                        self.vdl_writer.add_scalar("{}-mAP".format(key),
                                                   map_value[0],
                                                   self.vdl_mAP_step)
                self.vdl_mAP_step += 1
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348


class SniperProposalsGenerator(Callback):
    def __init__(self, model):
        super(SniperProposalsGenerator, self).__init__(model)
        ori_dataset = self.model.dataset
        self.dataset = self._create_new_dataset(ori_dataset)
        self.loader = self.model.loader
        self.cfg = self.model.cfg
        self.infer_model = self.model.model

    def _create_new_dataset(self, ori_dataset):
        dataset = copy.deepcopy(ori_dataset)
        # init anno_cropper
        dataset.init_anno_cropper()
        # generate infer roidbs
        ori_roidbs = dataset.get_ori_roidbs()
        roidbs = dataset.anno_cropper.crop_infer_anno_records(ori_roidbs)
        # set new roidbs
        dataset.set_roidbs(roidbs)

        return dataset

    def _eval_with_loader(self, loader):
        results = []
        with paddle.no_grad():
            self.infer_model.eval()
            for step_id, data in enumerate(loader):
                outs = self.infer_model(data)
                for key in ['im_shape', 'scale_factor', 'im_id']:
                    outs[key] = data[key]
                for key, value in outs.items():
                    if hasattr(value, 'numpy'):
                        outs[key] = value.numpy()

                results.append(outs)

        return results

    def on_train_end(self, status):
        self.loader.dataset = self.dataset
        results = self._eval_with_loader(self.loader)
        results = self.dataset.anno_cropper.aggregate_chips_detections(results)
        # sniper
        proposals = []
        clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()}
        for outs in results:
            batch_res = get_infer_results(outs, clsid2catid)
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                bbox_num = outs['bbox_num']
                end = start + bbox_num[i]
                bbox_res = batch_res['bbox'][start:end] \
                    if 'bbox' in batch_res else None
                if bbox_res:
                    proposals += bbox_res
        logger.info("save proposals in {}".format(self.cfg.proposals_path))
        with open(self.cfg.proposals_path, 'w') as f:
            json.dump(proposals, f)