mask_rcnn_r50_fpn_1x.yml 2.8 KB
Newer Older
1 2 3
architecture: MaskRCNN
use_gpu: true
max_iters: 180000
4
log_iter: 20
5 6 7 8 9 10 11 12 13 14 15
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/mask_rcnn_r50_fpn_1x/model_final
num_classes: 81
load_static_weights: True

# Model Achitecture
MaskRCNN:
  # model anchor info flow
16
  anchor: Anchor
17 18 19 20 21 22 23 24
  proposal: Proposal
  mask: Mask
  # model feat info flow
  backbone: ResNet
  neck: FPN
  rpn_head: RPNHead
  bbox_head: BBoxHead
  mask_head: MaskHead
25 26 27
  # post process
  bbox_post_process: BBoxPostProcess
  mask_post_process: MaskPostProcess
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

ResNet:
  # index 0 stands for res2
  depth: 50
  norm_type: bn
  freeze_at: 0
  return_idx: [0,1,2,3]
  num_stages: 4

FPN:
  in_channels: [256, 512, 1024, 2048]
  out_channel: 256
  min_level: 0
  max_level: 4
  spatial_scale: [0.25, 0.125, 0.0625, 0.03125]

RPNHead:
  rpn_feat:
    name: RPNFeat
    feat_in: 256
    feat_out: 256
  anchor_per_position: 3
  rpn_channel: 256

52
Anchor:
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  anchor_generator:
    name: AnchorGeneratorRPN
    aspect_ratios: [0.5, 1.0, 2.0]
    anchor_start_size: 32
    stride: [4., 4.]
  anchor_target_generator:
    name: AnchorTargetGeneratorRPN
    batch_size_per_im: 256
    fg_fraction: 0.5
    negative_overlap: 0.3
    positive_overlap: 0.7
    straddle_thresh: 0.0

Proposal:
  proposal_generator:
    name: ProposalGenerator
    min_size: 0.0
    nms_thresh: 0.7
    train_pre_nms_top_n: 2000
    train_post_nms_top_n: 2000
    infer_pre_nms_top_n: 1000
    infer_post_nms_top_n: 1000
  proposal_target_generator:
    name: ProposalTargetGenerator
    batch_size_per_im: 512
    bbox_reg_weights: [[0.1, 0.1, 0.2, 0.2],]
    bg_thresh_hi: [0.5,]
    bg_thresh_lo: [0.0,]
    fg_thresh: [0.5,]
    fg_fraction: 0.25
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

BBoxHead:
  bbox_feat:
    name: BBoxFeat
    roi_extractor:
      name: RoIAlign
      resolution: 7
      sampling_ratio: 2
    head_feat:
      name: TwoFCHead
      in_dim: 256
      mlp_dim: 1024
  in_feat: 1024

BBoxPostProcess:
  decode:
    name: RCNNBox
    num_classes: 81
    batch_size: 1
  nms:
    name: MultiClassNMS
    keep_top_k: 100
    score_threshold: 0.05
    nms_threshold: 0.5
107 108 109 110 111

Mask:
  mask_target_generator:
    name: MaskTargetGenerator
    mask_resolution: 28
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

MaskHead:
  mask_feat:
    name: MaskFeat
    num_convs: 4
    feat_in: 256
    feat_out: 256
    mask_roi_extractor:
      name: RoIAlign
      resolution: 14
      sampling_ratio: 2
    share_bbox_feat: False
  feat_in: 256


MaskPostProcess:
  mask_resolution: 28
129 130 131 132 133 134 135 136 137 138


# Train
LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [120000, 160000]
  - !LinearWarmup
W
wangguanzhong 已提交
139
    start_factor: 0.3333333
140 141 142 143 144 145 146 147 148 149 150
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

_READER_: 'mask_reader.yml'