architecture: MaskRCNN use_gpu: true max_iters: 180000 log_iter: 20 save_dir: output snapshot_iter: 10000 pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar metric: COCO weights: output/mask_rcnn_r50_fpn_1x/model_final num_classes: 81 load_static_weights: True # Model Achitecture MaskRCNN: # model anchor info flow anchor: Anchor proposal: Proposal mask: Mask # model feat info flow backbone: ResNet neck: FPN rpn_head: RPNHead bbox_head: BBoxHead mask_head: MaskHead # post process bbox_post_process: BBoxPostProcess mask_post_process: MaskPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 FPN: in_channels: [256, 512, 1024, 2048] out_channel: 256 min_level: 0 max_level: 4 spatial_scale: [0.25, 0.125, 0.0625, 0.03125] RPNHead: rpn_feat: name: RPNFeat feat_in: 256 feat_out: 256 anchor_per_position: 3 rpn_channel: 256 Anchor: anchor_generator: name: AnchorGeneratorRPN aspect_ratios: [0.5, 1.0, 2.0] anchor_start_size: 32 stride: [4., 4.] anchor_target_generator: name: AnchorTargetGeneratorRPN batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 straddle_thresh: 0.0 Proposal: proposal_generator: name: ProposalGenerator min_size: 0.0 nms_thresh: 0.7 train_pre_nms_top_n: 2000 train_post_nms_top_n: 2000 infer_pre_nms_top_n: 1000 infer_post_nms_top_n: 1000 proposal_target_generator: name: ProposalTargetGenerator batch_size_per_im: 512 bbox_reg_weights: [[0.1, 0.1, 0.2, 0.2],] bg_thresh_hi: [0.5,] bg_thresh_lo: [0.0,] fg_thresh: [0.5,] fg_fraction: 0.25 BBoxHead: bbox_feat: name: BBoxFeat roi_extractor: name: RoIAlign resolution: 7 sampling_ratio: 2 head_feat: name: TwoFCHead in_dim: 256 mlp_dim: 1024 in_feat: 1024 BBoxPostProcess: decode: name: RCNNBox num_classes: 81 batch_size: 1 nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 Mask: mask_target_generator: name: MaskTargetGenerator mask_resolution: 28 MaskHead: mask_feat: name: MaskFeat num_convs: 4 feat_in: 256 feat_out: 256 mask_roi_extractor: name: RoIAlign resolution: 14 sampling_ratio: 2 share_bbox_feat: False feat_in: 256 MaskPostProcess: mask_resolution: 28 # Train LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [120000, 160000] - !LinearWarmup start_factor: 0.3333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'mask_reader.yml'