layer_norm_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/layer_norm_op.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
29 30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of LayerNormOp should not be null.");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39 40
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
C
chengduoZH 已提交
41
                      "'begin_norm_axis' must be less than the rank of X.");
C
chengduoZH 已提交
42 43 44

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
45
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
46 47 48 49 50 51 52 53
    if (ctx->HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
    }
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
    }
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
56 57
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
58 59 60 61 62 63
    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
C
chengduoZH 已提交
65
    AddInput("X", "(LoDTensor) The input tensor.");
C
chengduoZH 已提交
66
    AddInput("Scale",
C
chengduoZH 已提交
67 68 69 70
             "(Tensor, optional) Scale is a 1-dimensional tensor of size "
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
71
    AddInput("Bias",
C
chengduoZH 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
             "(Tensor, optional) Bias is a 1-dimensional tensor of size "
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
    AddOutput("Y", "(LoDTensor) Result after normalization.");
    AddOutput("Mean", "(Tensor) Mean of the current mini batch.")
        .AsIntermediate();
    AddOutput("Variance", "(Tensor) Variance of the current mini batch.")
        .AsIntermediate();

    AddAttr<float>("epsilon",
                   "(float, default 1e-5) Constant for "
                   "numerical stability")
C
chengduoZH 已提交
85 86 87 88 89
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
90 91
    AddAttr<int>("begin_norm_axis",
                 "(int default:1), the "
C
chengduoZH 已提交
92 93 94
                 "axis of `begin_norm_axis ... Rank(X) - 1` will be "
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
                 "matrix [N,H].")
C
chengduoZH 已提交
95 96 97 98 99
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    AddComment(R"DOC(
Layer Normalization.
Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
C
chengduoZH 已提交
116 117 118 119 120 121 122 123
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mean"),
                   "Input(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of LayerNormOp should not be null.");
C
chengduoZH 已提交
124 125 126

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
127
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
128 129
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
130 131
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
132 133
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
134 135
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
164
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
165 166
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp);
C
chengduoZH 已提交
167
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
168 169
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
170 171
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
172 173
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);