Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
87b5559c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
87b5559c
编写于
1月 29, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix scale and bias dim
上级
0f47703d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
52 addition
and
48 deletion
+52
-48
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+42
-42
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+10
-6
未找到文件。
paddle/operators/layer_norm_op.cc
浏览文件 @
87b5559c
...
...
@@ -38,10 +38,6 @@ class LayerNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
""
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
1
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
1
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
begin_norm_axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"begin_norm_axis"
);
PADDLE_ENFORCE_LT
(
begin_norm_axis
,
x_dim
.
size
(),
...
...
@@ -50,6 +46,11 @@ class LayerNormOp : public framework::OperatorWithKernel {
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dim
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
left
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
left
);
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Mean"
,
{
left
});
ctx
->
SetOutputDim
(
"Variance"
,
{
left
});
...
...
@@ -64,10 +65,10 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size
1
"
"Scale is a 1-dimensional tensor of size
H
"
"that is applied to the output"
);
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size
1
"
"Bias is a 1-dimensional tensor of size
H
"
"that is applied to the output"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"Mean"
,
"Mean of the current mini batch."
);
...
...
@@ -110,9 +111,6 @@ class LayerNormKernel<platform::CPUDeviceContext, T>
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
scale_data
=
scale
->
data
<
T
>
()[
0
];
auto
bias_data
=
bias
->
data
<
T
>
()[
0
];
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
...
...
@@ -123,7 +121,10 @@ class LayerNormKernel<platform::CPUDeviceContext, T>
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
left
,
1
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
left
,
1
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
...
...
@@ -138,18 +139,15 @@ class LayerNormKernel<platform::CPUDeviceContext, T>
.
mean
()
.
unaryExpr
(
add_epslion
);
auto
scale_inv_std
=
[
scale_data
](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
auto
sub_bias
=
[
bias_data
](
T
ele
)
{
return
bias_data
-
ele
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// TODO(zcd): Some thinking about output_map, is it appropriate that
// `output_map` and `input_map` point to the same memory.
output_map
=
(
var_map
.
unaryExpr
(
scale_inv_std
).
replicate
(
1
,
right
))
.
cwiseProduct
(
input_map
)
+
var_map
.
unaryExpr
(
scale_inv_std
)
.
cwiseProduct
(
mean_map
)
.
unaryExpr
(
sub_bias
)
.
replicate
(
1
,
right
);
auto
inv_std_scale
=
var_map
.
unaryExpr
(
inv_std_func
).
cwiseProduct
(
scale_map
);
output_map
=
inv_std_scale
.
replicate
(
1
,
right
).
cwiseProduct
(
input_map
)
+
(
bias_map
-
inv_std_scale
.
cwiseProduct
(
mean_map
)).
replicate
(
1
,
right
);
}
};
...
...
@@ -165,17 +163,17 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Variance"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
""
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// check output
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
)
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
{
1
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
ctx
->
GetInputDim
(
"Scale"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
{
1
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
}
...
...
@@ -210,20 +208,20 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
const
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
scale_data
=
scale
->
data
<
T
>
()[
0
];
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
])
,
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
])
;
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
left
,
1
);
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
...
...
@@ -231,36 +229,38 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
data
<
T
>
()[
0
]
=
d_y_map
.
sum
();
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
left
,
1
);
d_bias_map
=
d_y_map
.
colwise
().
mean
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
inv_std
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
left
,
1
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// There are two equation to compute d_scale. One uses "Y" and the other
// does not use "Y"
d_scale
->
data
<
T
>
()[
0
]
=
d_scale
_map
=
((
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std
).
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std_func
).
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
))
.
sum
();
.
colwise
()
.
mean
();
}
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product_func
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
scale_func
=
[
scale_data
](
T
ele
)
{
return
ele
*
scale_data
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
auto
inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_scale_func
)
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
var_map
.
unaryExpr
(
inv_std_scale_func
)
var_map
.
unaryExpr
(
inv_std_func
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
...
...
@@ -274,11 +274,11 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
auto
dvar_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
dvar_end
)
.
unaryExpr
(
scale_func
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
...
...
python/paddle/v2/fluid/tests/test_layer_norm_op.py
浏览文件 @
87b5559c
...
...
@@ -39,8 +39,9 @@ def _reference_layer_norm_naive(x, scale, beta, epsilon, begin_norm_axis=1):
x
.
shape
=
[
N
,
D
]
mean
=
np
.
mean
(
x
,
axis
=
1
)
var
=
np
.
var
(
x
,
axis
=
1
)
+
epsilon
output
=
scale
*
np
.
divide
((
x
-
mean
.
reshape
([
N
,
1
])),
(
np
.
sqrt
(
var
)).
reshape
([
N
,
1
]))
+
beta
output
=
scale
.
reshape
([
1
,
D
])
*
np
.
divide
(
(
x
-
mean
.
reshape
([
N
,
1
])),
(
np
.
sqrt
(
var
)).
reshape
([
N
,
1
]))
+
beta
.
reshape
([
1
,
D
])
output
.
shape
=
old_shape
x
.
shape
=
old_shape
return
output
,
mean
,
var
...
...
@@ -55,8 +56,10 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
mean
.
shape
=
[
N
,
1
]
var
.
shape
=
[
N
,
1
]
d_scale
=
np
.
sum
(
grad_y
).
reshape
([
1
,
])
d_bias
=
np
.
sum
(((
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
).
reshape
([
1
,
])
d_scale
=
np
.
sum
(
grad_y
,
axis
=
1
).
reshape
([
1
,
D
])
d_bias
=
scale
.
reshape
([
1
,
D
])
*
np
.
sum
((
(
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
,
axis
=
1
).
reshape
([
1
,
D
])
dx_end
=
np
.
sqrt
(
1.0
/
var
)
*
grad_y
...
...
@@ -69,7 +72,7 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
d_std
=
np
.
sum
(
-
1.0
/
var
*
(
x
-
mean
)
*
grad_y
,
axis
=
1
).
reshape
([
N
,
1
])
*
(
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
).
reshape
([
N
,
1
])
*
(
x
-
mean
))
grad_x
=
scale
*
(
dx_end
+
d_mean
+
d_std
)
grad_x
=
scale
.
reshape
([
1
,
D
])
*
(
dx_end
+
d_mean
+
d_std
)
grad_y
.
shape
=
x_shape
x
.
shape
=
x_shape
...
...
@@ -146,7 +149,8 @@ class TestLayerNormdOp(OpTest):
# attr
epsilon
=
0.00001
x_shape
=
shape
scale_shape
=
[
1
]
D
=
reduce
(
mul
,
x_shape
[
begin_norm_axis
:
len
(
x_shape
)],
1
)
scale_shape
=
[
D
]
np
.
random
.
random
(
123
)
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录