post_process.py 3.3 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Q
qingqing01 已提交
14 15 16 17 18 19
import six
import os
import numpy as np
import cv2


G
Guanghua Yu 已提交
20
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
Q
qingqing01 已提交
21 22 23 24 25 26
    det_res = []
    k = 0
    for i in range(len(bbox_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = bbox_nums[i]
        for j in range(det_nums):
G
Guanghua Yu 已提交
27
            dt = bboxes[k]
Q
qingqing01 已提交
28
            k = k + 1
G
Guanghua Yu 已提交
29 30 31 32
            num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
            if int(num_id) < 0:
                continue
            category_id = label_to_cat_id_map[int(num_id)]
W
wangxinxin08 已提交
33 34
            w = xmax - xmin + bias
            h = ymax - ymin + bias
Q
qingqing01 已提交
35 36 37 38 39 40 41 42 43 44 45
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': cur_image_id,
                'category_id': category_id,
                'bbox': bbox,
                'score': score
            }
            det_res.append(dt_res)
    return det_res


G
Guanghua Yu 已提交
46
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
47
    import pycocotools.mask as mask_util
Q
qingqing01 已提交
48 49 50 51 52 53
    seg_res = []
    k = 0
    for i in range(len(mask_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = mask_nums[i]
        for j in range(det_nums):
G
Guanghua Yu 已提交
54 55 56
            mask = masks[k].astype(np.uint8)
            score = float(bboxes[k][1])
            label = int(bboxes[k][0])
Q
qingqing01 已提交
57
            k = k + 1
58 59 60 61
            cat_id = label_to_cat_id_map[label]
            rle = mask_util.encode(
                np.array(
                    mask[:, :, None], order="F", dtype="uint8"))[0]
Q
qingqing01 已提交
62
            if six.PY3:
63 64
                if 'counts' in rle:
                    rle['counts'] = rle['counts'].decode("utf8")
Q
qingqing01 已提交
65 66 67
            sg_res = {
                'image_id': cur_image_id,
                'category_id': cat_id,
68
                'segmentation': rle,
Q
qingqing01 已提交
69 70 71 72
                'score': score
            }
            seg_res.append(sg_res)
    return seg_res
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101


def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
    import pycocotools.mask as mask_util
    segm_res = []
    # for each batch
    segms = results['segm'].astype(np.uint8)
    clsid_labels = results['cate_label']
    clsid_scores = results['cate_score']
    lengths = segms.shape[0]
    im_id = int(image_id[0][0])
    if lengths == 0 or segms is None:
        return None
    # for each sample
    for i in range(lengths - 1):
        clsid = int(clsid_labels[i]) + 1
        catid = num_id_to_cat_id_map[clsid]
        score = float(clsid_scores[i])
        mask = segms[i]
        segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
        segm['counts'] = segm['counts'].decode('utf8')
        coco_res = {
            'image_id': im_id,
            'category_id': catid,
            'segmentation': segm,
            'score': score
        }
        segm_res.append(coco_res)
    return segm_res